Skip to main content

3D Printing of Poly(lactic acid)

  • Chapter
  • First Online:
Industrial Applications of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 282))

Abstract

Poly(lactic acid) has received considerable interest in biopolymer-related research because of its excellent biocompatibility and sustainability. With the advent of new processing routes based on additive manufacturing technologies – commonly called 3D printing – applications of PLA have become more and more widespread, especially in the biomedical field (e.g., as scaffolds for tissue engineering). This review focuses on three of the most important additive manufacturing routes: extrusion-based 3D printing techniques, powder-based laser sintering, and stereolithography. For each of these methods, we discuss the processing conditions and their effect on the end use of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lunt J (1998) Large scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  2. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  3. Ajiro H, Ito S, Kan K, Akashi M (2016) Catechin-modified polylactide sterocomplex at chain end improved antibiobacterial property. Macromol Biosci 16:694–704

    Article  CAS  PubMed  Google Scholar 

  4. Auras R, Harte B, Selke S, Hernandez R (2003) Mechanical, physical and barrier properties of poly(lactide-films). J Plast Film Sheeting 19:123–135

    Article  CAS  Google Scholar 

  5. Lehermeier H, Dorgan J, Way JD (2000) Gas permeation properties of poly(lactic acid). J Polym Environ 8:1–9

    Article  Google Scholar 

  6. Urayama H, Moon SI, Kimura Y (2003) Microstructure and thermal porperties of polylactides with different L- and D-unit sequences: importance of the helical nature of the L-sequenced segments. Macromol Mater Eng 288:137–143

    Article  CAS  Google Scholar 

  7. Tsuhi H, Okino R, Daimon H, Fujie K (2005) Water vapor permeability of poly(latide)s: effects of molecular characteristics and crystallinity. J Appl Polym Sci 99:2245–2252

    Google Scholar 

  8. Sarasua JR, Arraiza AL, Baerldi P, Maiza I (2005) Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym Eng Sci 45:745–753

    Article  CAS  Google Scholar 

  9. Tsuji H, Idada Y (1996) Crystallization from the melt of PLA with different optical puriteis and their blends. Maromol Chem Phys 197:3483–3499

    CAS  Google Scholar 

  10. Tan BH, Muirruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4:5370–5391

    Article  CAS  Google Scholar 

  11. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation and applications. Macromol Biosci 5:569–597

    Article  CAS  PubMed  Google Scholar 

  12. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  13. Nalawade S, Picchione F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43

    Article  CAS  Google Scholar 

  14. Quirk RA, France RM, Shakesheff KM, Howdle SM (2004) Supercritical fluid technologies and tissue engineering scaffolds. Curr Opinion Solid State Mater Sci 8:313–321

    Article  CAS  Google Scholar 

  15. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:5330–5338

    Article  CAS  Google Scholar 

  16. Xu X, Yang Q, Wang Y, Chen X, Jing X (2006) Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2087

    Article  CAS  Google Scholar 

  17. Jun Z, Hou H, Schaper A, Wendorff JH, Greiner A (2003) Poly-L-lactide nanofibers by electrospinning – influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. E-Polymers 3:102–110

    Google Scholar 

  18. ISO/ASTM standard 52900 (2015) Standard terminology for additive manufacturing – general principles – part 1: terminology. ASTM, West Conshohocken

    Google Scholar 

  19. Hopkinson N, Hague R, Dickens P (2005) Rapid manufacturing: an industrial revolution for a digital age. Wiley-Blackwell, Berlin

    Book  Google Scholar 

  20. Goodridge RD, Tuck CJ, Hague RJM (2012) Laser sintering of polyamides and other polymers. Prog Mater Sci 57:229–267

    Article  CAS  Google Scholar 

  21. Campbell RI, Hague RJM, Sener B, Wormald PW (2004) The potential for the bespoke industrial designer. Des J 6:24–34

    Google Scholar 

  22. Hopkinson N, Dickens P (2001) Rapid prototyping for direct manufacture. Rapid Prototyp J 7:197–202

    Article  Google Scholar 

  23. Chua CK, Leong KF, Lin CS (2010) Rapid prototyping: principles and applications, 3rd edn. World Scientific Publishing, Singapore

    Google Scholar 

  24. Van Puyvelde P (2016) 3D printing: the making of utopia. In: Achten V, Bouckaert G, Schokkaert E (eds) A truly golden handbook’: the scholarly quest for utopia. Leuven University Press, Leuven, pp 442–451

    Google Scholar 

  25. Bourell DL (2016) Perspectives on additive manufacturing. Ann Rev Mater Res 46:1–18

    Article  CAS  Google Scholar 

  26. Kruth JP (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann Manuf Techol 40:603–614

    Article  Google Scholar 

  27. Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47:525–540

    Article  Google Scholar 

  28. Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, State of the art and future perspectives. CIRP Ann Manuf Technol 52:589–609

    Article  Google Scholar 

  29. Wohlers TT (2011) Wohlers report 2016: 3D printing and additive manufacturing State of the industry annual worldwide progress report. Wohlers Associates Inc., Fort Collins

    Google Scholar 

  30. Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20:192–204

    Article  Google Scholar 

  31. Kostakis V, Niaros V, Giotitsas C (2015) Open source 3D printing as a means of learning: an educational experiment in two high schools in Greece. Telematics Inform 32:118–128

    Article  Google Scholar 

  32. Baden T, Chagas AM, Gage G, Marzullo T, Prieto-Godino LL, Euler T (2015) Open labware: 3D printing your own lab equipment. PLoS Biol 13:e1002086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pearce JM (2015) Application of open source 3D-printing on small farms. Org Farming 1:19–35

    Article  Google Scholar 

  34. Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG (2014) Three-dimensional printing surgical instruments: are we there yet? J Surg Res 189:193–197

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2014) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–652

    Article  CAS  Google Scholar 

  36. Ortega Z, Aleman ME, Benitez AN, Monzon MD (2016) Theoretical-experimental evaluation of different biomaterials for parts obtained by fused deposition modeling. Measurement 89:137–144

    Article  Google Scholar 

  37. Bourell DL, Leu MC, Rosen DW (2009) Roadmap for additive manufacturing: identifying the future of freeform processing. The university of Texas at Austin Laboratory for Freeform Fabrication Advanced Manufacturing Series, Austin, pp 11–15

    Google Scholar 

  38. Lee C, Kim S, Ahn S (2007) Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol 187/188:627–630

    Article  CAS  Google Scholar 

  39. Panda SK, Padhee S, Sood AK, Mahapatra S (2009) Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell Inf Manag 1:89–97

    Google Scholar 

  40. Zhang JW, Peng AH (2012) Process parameter optimization for fused deposition modeling based on Taguchi method. Adv Mater Res 538:444–447

    Article  Google Scholar 

  41. Drummer D, Cifuentes-Cuellar S, Rietzel D (2012) Suitability of PLA/TCP for fused deposition modeling. Rapid Protyp J 18:500–507

    Article  Google Scholar 

  42. Too M, Leong K, Chua C, Du Z, Yang S, Cheah C, Ho S (2002) Investigation of 3D non-random porous structures by fused deposition modeling. Int J Adv Manuf Technol 19:217–223

    Article  Google Scholar 

  43. Sood AK, Ohdar R, Mahapatra S (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31:287–295

    Article  CAS  Google Scholar 

  44. Torres J, Cole M, Owji A, DeMastry Z, Gordon AP (2016) An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Protyp J 22:387–404

    Article  Google Scholar 

  45. Lanzottin A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source printer. Rapid Protyp J 21:604–617

    Article  Google Scholar 

  46. Stephen AO, Dalgarno KW, Munguai J (2014) Quality assurance and process monitoring of fused deposition modelling made parts. Advanced research in virtual and rapid prototyping. Taylor & Francis Group, London

    Google Scholar 

  47. Afrose MF, Masood SH, Lovenitti P, Nikzad M, Sbarski I (2016) Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Prog Addit Manuf 1:21–28

    Article  Google Scholar 

  48. Liu X, Shengpeng L, Zhou L, Xianhua Z, Xiaohu C, Zhongbin W (2015) An investigation on distortion of PLA thin-plate part in the FDM process. Int J Adv Manuf Technol 79:1117–1126

    Article  Google Scholar 

  49. Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22:493–486

    Article  CAS  Google Scholar 

  50. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5:11181. doi:10.1038/srep11181

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tian X, Liu T, Yang C, Wang Q, Li D (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos Part A 88:198–205

    Article  CAS  Google Scholar 

  52. Serra T, Mateos-Timoneda MA, Planell JA, Navarro M (2013) 3D printed PLA-based scaffolds. Organogenesis 9:239–244

    Article  PubMed  PubMed Central  Google Scholar 

  53. Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3D printing technology. Acta Biomater 9:5521–5530

    Article  CAS  PubMed  Google Scholar 

  54. Fong EL, Lamhamedi-Cherradi SE, Burdett E, Ramamoorthy V, Lazar AJ, Kasper FK, Farach-Carson MC, Vishwamitta D, Demicco EG, Menegaz BA (2013) Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci U S A 110:6500–6505

    Article  PubMed  PubMed Central  Google Scholar 

  55. Serra T, Ortiz-Hernandez M, Engel E, Planell JA, Navarro M (2014) Relevance of PEG in PLA-based blends for tissue engineering. Mater Sci Eng C 38:55–62

    Article  CAS  Google Scholar 

  56. Zalipsky S, Harris JM (1997) Introduction ot chemistry and biological applications of poly(ethylene) glycol. In: Harris JM, Zalipsky S (eds) Poly(ethylene glycol): biomedical and biotechnological applications, ACS symposium series, vol 680. American Chemical Society, Washington, pp 1–13

    Chapter  Google Scholar 

  57. Inada Y, Furukawa M, Sasaki H, Kodera Y, Hiroto M, Nishimura H, Matsushima A (1995) Biomedical and biotechnological applications of PEG- and PM-modified proteins. Trends Biotechnol 13:86–91

    Article  CAS  PubMed  Google Scholar 

  58. Mironov V (2003) Printing technology to produce living tissue. Expert Opin Biol Ther 3:701–704

    Article  PubMed  Google Scholar 

  59. Liew CL, Leong KF, Chua CK, Du Z (2001) Dual material rapid prototyping techniques for the development of biomedical devices. Part A: space creation. Int J Adv Manuf Technol 18:717–723

    Article  Google Scholar 

  60. Verbelen L, Dadbakhsh S, Van den Eynde M, Kruth J-P, Goderis B, Van Puyvelde P (2016) Characterization of polyamide powders for determination of laser sintering processability. Eur Polym J 75:163–174

    Article  CAS  Google Scholar 

  61. Schmid M, Amado A, Wegener K (2014) Materials perspective of polymers for additive manufacturing with selective laser sintering. J Mater Res 29:1824–1832

    Article  CAS  Google Scholar 

  62. Shi Y, Li Z, Sun H, Huang S, Zeng F (2004) Effect of the properties of the polymer materials on the quality of selective laser sintering parts. J Mater Des Applic 218:247–252

    CAS  Google Scholar 

  63. Evans RS, Bourell DL, Beaman JJ, Campbell MI (2005) SLS materials development for rapid manufacturing. In: Proceedings of the 16th solid freeform fabrication symposium, Austin, pp 184–196

    Google Scholar 

  64. Drummer D, Rietzel D, Kühnlein F (2010) Development of a characterization approach for the sintering behavior of new thermoplastics for seelctive laser sintering. Phys Procedia 5:533–542

    Article  CAS  Google Scholar 

  65. Dupin S, Lame O, Barrès C, Charmeau JY (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur Polym J 48:1611–1621

    Article  CAS  Google Scholar 

  66. Van den Eynde M, Verbelen L, Van Puyvelde P (2015) Assessing polymer powder flow for the application of laser sintering. Powder Technol 286:151–155

    Article  CAS  Google Scholar 

  67. Frenkel J (1945) Viscous flow of crystalline bodies under the action of surface tension. J Phys 9:358–391

    Google Scholar 

  68. Wouters M, de Ruiter B (2003) Contact angle development of polymer melts. Prog Org Coat 48:207–213

    Article  CAS  Google Scholar 

  69. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  70. Gibson I, Shi D (1997) Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp J 3:129–136

    Article  Google Scholar 

  71. Zarringhalam H, Hopkinson N, Kamperman NF, de Vlieger JJ (2006) Effects of processing on microstructure and properties of SLS nylon 12. Mater Sci Eng A 4325:172–180

    Article  CAS  Google Scholar 

  72. Dotchev KD, Yusoff WA (2009) Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp J 15:192–203

    Article  Google Scholar 

  73. Vasquez M, Haworth B, Hopkinson N (2013) Methods for quantifying the stable sintering region in laser sintered polyamide-12. Polym Eng Sci 53:1230–1240

    Article  CAS  Google Scholar 

  74. Zoller P, Walsh D (1995) Standard pressure-volume-temperature data for polymers. CRC, Boca Raton

    Google Scholar 

  75. Verbelen L (2016) Towards scientifically based screening criteria for polymer laser sintering. PhD thesis, KU Leuven

    Google Scholar 

  76. Pohle D, Ponader S, Rechtenwald T, Schmidt M, Schlegel KA, Munstedt H (2007) Processing of three-dimensional laser sintered polyetheretherketone composites and testing of osteoblast proliferation in vitro. Macromol Symp 253:65–70

    Article  CAS  Google Scholar 

  77. Partee B, Hollister SJ, Das S (2006) Selective laser sintering process optimisation ofr layered manufacturing of CAPA 6501 polycaprolactone bone tissue engineering scaffolds. J Manuf Sci Eng 128:531–540

    Article  Google Scholar 

  78. Rimell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight poyethylene for clinical applications. J Biomed Mater Res 53:414–420

    Article  CAS  PubMed  Google Scholar 

  79. Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med 19:2535–2540

    Article  CAS  PubMed  Google Scholar 

  80. Chen VJ, Smith LA, Ma PX (2006) Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 27:3973–3979

    Article  CAS  PubMed  Google Scholar 

  81. Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2003) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447

    Article  Google Scholar 

  82. Antonov EN, Bagratashvili VN, Whitaker MJ, Barry JJA, Shakesheff KM, Konovalov AN, Popov VK, Howdle SM (2005) Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv Mater 17:327–330

    Article  CAS  Google Scholar 

  83. Popov VK (2007) Laser technologies for fabricating individual implants and matrices for tissue engineering. J Opt Technol 74:636–640

    Article  CAS  Google Scholar 

  84. Elias KL, Price RL, Webster TJ (2002) Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23:3279–3287

    Article  CAS  PubMed  Google Scholar 

  85. Price RL, Waid WC, Haberstroh KM, Webster TJ (2003) Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24:1877–1887

    Article  CAS  PubMed  Google Scholar 

  86. Bai J, Goodridge RD, Hague RJM, Okamoto M (2015) Processing and characterization of a polylactic acid/nanoclay composite for laser sintering. Polym Compos. doi:10.1002/pc.23848

  87. Wang WL, Cheah CM, Fuh JYH, Lu L (1996) Influence of process parameters on stereolithography part shrinkage. Mater Des 17:205–213

    Article  CAS  Google Scholar 

  88. Heller C, Schwentenwein M, Russmueller G, Varga F, Stampfl J, Liska R (2009) Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based added manufacturing. J Polym Sci A Polym Chem 47:6941–6954

    Article  CAS  Google Scholar 

  89. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130

    Article  CAS  PubMed  Google Scholar 

  90. Maruo S, Ikuta K (2002) Submicron stereolithography for the production of freely moalbe mechanisms by using single-photon polymerizations. Sens Actuators A Phys 100:70–76

    Article  CAS  Google Scholar 

  91. Mansour S, Gilbert A, Hague R (2007) A study of the impact of short-term ageing on the mecahnical properties of a stereolithography resin. Mater Sci Eng A 447:277–284

    Article  CAS  Google Scholar 

  92. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical sized 3D biodegradable scaffolds for bone in growth. J Biomed Mater Res B Appl Biomater 64:65–69

    Article  CAS  PubMed  Google Scholar 

  93. Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(e-caprolactone-co-trimethylen carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J Biomed Mater Res 62:395–403

    Article  CAS  PubMed  Google Scholar 

  94. Matsua T, Mizutani M, Arnold SC (2000) Molecular design of photocurable liquid biodegradable copolymers. I. Synthesis and photocuring characteristics. Macromolecules 33:795–800

    Article  CAS  Google Scholar 

  95. Lee SJ, Kang HW, Park JK, Rhie JW, Hahn SK, Cho DW (2008) Application of micro-stereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10:233–241

    Article  CAS  Google Scholar 

  96. Jansen J, Melchels FPW, Grijpma DW, Feijen J (2009) Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by steroelithography. Biomacromolecules 10:214–220

    Article  CAS  PubMed  Google Scholar 

  97. Melchels FPW, Feijen J, Grijpma DW (2009) A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30:3801–3809

    Article  CAS  Google Scholar 

  98. Raghoebar GM, Liem RSB, Bos RRM, van der Wal JE, Vissink A (2006) Resorbable screws fro fixation of autologous bone grafts. Clin Oral Implants Res 17:288–293

    Article  PubMed  Google Scholar 

  99. Acosta HL, Stelnicki EJ, Rodriguez L, Slingbaum LA (2005) Use of absorbable poly(D,L)lactic acid plates in cranial-vault remodelling: presentation of the first case and lessonos learned about its use. Cleft Palate Craniofac J 43:333–339

    Article  Google Scholar 

  100. Silva M, Cyster LA, Barry JJA, Yang XB, Oreffo ROC, Grant DM (2006) The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 27:5909–5917

    Article  CAS  PubMed  Google Scholar 

  101. Tuli R, Nandi L, Li WJ, Tuli S, Huang XX, Manner PA (2004) Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng 10:1169–1179

    Article  CAS  PubMed  Google Scholar 

  102. Claase MB, de Riekering MB, de Bruijn JD, Grijpma DW, Engbers GHM, Feijen J (2003) Enhanced bone marrow stromal cell adhesion and growth on segmented poly(ether ester)s based on poly(ethylene oxide) and poly(butylene, terephtalate). Biomacromolecules 4:57–63

    Article  CAS  PubMed  Google Scholar 

  103. Storey RF, Warren SC, Allison CJ, Wiggins JS, Pucket AD (1993) Synthesis of bio-absorbable networks from methacrylate-endcapped polyesters. Polymer 34:4365–5372

    Article  CAS  Google Scholar 

  104. Grijpma DW, Hou QP, Feijen J (2005) Preparation of biodegradable networks by photo-crosslinking lactide, epsilon-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric and monoethyl ester. Biomaterials 26:2795–2802

    Article  CAS  PubMed  Google Scholar 

  105. Sawhney AS, Pathak CP, Jubbell JA (1993) Bioerodible hydrogels based on photo-polymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587

    Article  CAS  Google Scholar 

  106. Hinczewski C, Corbel S, Chartier T (1998) Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc 18:583–590

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support provided by the Strategic Initiative Materials (SIM) in Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Van Puyvelde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van den Eynde, M., Van Puyvelde, P. (2017). 3D Printing of Poly(lactic acid). In: Di Lorenzo, M., Androsch, R. (eds) Industrial Applications of Poly(lactic acid). Advances in Polymer Science, vol 282. Springer, Cham. https://doi.org/10.1007/12_2017_28

Download citation

Publish with us

Policies and ethics