Skip to main content

Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product

  • Chapter
  • First Online:
Synthesis, Structure and Properties of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 279))

Abstract

Demand for lactic acid has increased considerably because of its wide application, especially as monomer feedstock for the production of biodegradable and biocompatible poly(lactic acid) materials. Therefore, improvement in fermentative production of optically pure lactic acid has attracted considerable attention. However, the high costs of the process and of raw materials are two serious obstacles to effective lactic acid production. Investigation of biorefinery-based lactic acid fermentation using residual biomass from agriculture and agro-industries has intensified because of environmental and economic factors. This chapter reviews recent advances, prospects, and limitations of lactic acid production from cellulosic biomass by lactic acid bacteria. The main obstacles to production are discussed and appropriate strategies are suggested for improving biomass hydrolysis and the efficiency of lactic acid fermentation. This chapter also introduces a cost-effective and environmentally friendly fermentation that utilizes “designed biomass.” Separation and purification techniques for obtaining purified lactic acid monomers are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229

    Article  CAS  Google Scholar 

  2. Subramanian MR, Talluri S, Christopher LP (2015) Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb Biotechnol 8(2):221–229

    Article  CAS  Google Scholar 

  3. Tashiro Y, Kaneko W, Sun YQ, Shibata K, Inokuma K, Zendo T, Sonomoto K (2011) Continuous d-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Appl Microbiol Biotechnol 89(6):1741–1750

    Article  CAS  Google Scholar 

  4. Ohara H, Okuyama H, Sawa S, Fujii Y, Hiyama K (2001) Development of industrial production of high molecular weight poly-l-lactate from renewable resources. Nippon Kagaku Kaishi 2001(6):323–331

    Article  Google Scholar 

  5. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902

    Article  CAS  Google Scholar 

  6. Nagasawa N, Kaneda A, Kanazawa S, Yagi T, Mitomo H, Yoshii F, Tamada M (2005) Application of poly (lactic acid) modified by radiation crosslinking. Nucl Instrum Methods Phys Res B 236(1-4):611–616

    Article  CAS  Google Scholar 

  7. Goldberg JS (2014) PDLA a potential new potent topical analgesic: a case report. Local Reg Anesth 7:59–61

    Article  Google Scholar 

  8. Tsuji H, Ikada Y (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules 25(21):5719–5723

    Article  CAS  Google Scholar 

  9. Okihara T, Tsuji M, Kawaguchi A, Katayama K, Tshuji H, Hyon SH, Ikada Y (1991) Crystal structure of stereocomplex of poly(l-lactide) and poly(d-lactide). J Macromol Sci B Phys B30(1–2):119–140

    Article  Google Scholar 

  10. Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172

    CAS  Google Scholar 

  11. Wang Y, Tashiro Y, Sonomoto K (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 199(1):10–18

    Article  CAS  Google Scholar 

  12. Kim D, Lee M, Hwang Y, Im W, Yun Y, Park C, Kim M (2016) Microbial granulation for lactic acid production. Biotechnol Bioeng 113(1):101–111

    Article  CAS  Google Scholar 

  13. Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29(6):930–939

    Article  CAS  Google Scholar 

  14. Alvarado-Morales M, Gunnarsson IB, Fotidis IA, Vasilakou E, Lyberatos G, Angelidaki I (2015) Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res 9:126–132

    Article  Google Scholar 

  15. Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522

    Article  CAS  Google Scholar 

  16. Ohara H (2003) Biorefinery. Appl Microbiol Biotechnol 62(5):474–477

    Article  CAS  Google Scholar 

  17. Gandolfi S, Pistone L, Ottolina G, Xu P, Riva S (2015) Hemp hurds biorefining: a path to green l-(+)-lactic acid production. Bioresour Technol 191:59–65

    Article  CAS  Google Scholar 

  18. Sambusiti C, Bellucci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sust Energ Rev 44:20–36

    Article  CAS  Google Scholar 

  19. Ohara H, Yahata M (1996) l-lactic acid production by Bacillus sp. in anaerobic and aerobic culture. J Ferment Bioeng 81(3):272–274

    Article  CAS  Google Scholar 

  20. Saito K, Hasa Y, Abe H (2012) Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J Biosci Bioeng 114(2):166–169

    Article  CAS  Google Scholar 

  21. Wu X, Jiang S, Liu M, Pan L, Zheng Z, Luo S (2011) Production of l-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J Ind Microbiol Biotechnol 38(4):565–571

    Article  CAS  Google Scholar 

  22. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35(3):251–263

    Article  CAS  Google Scholar 

  23. Khuat HBT, Kaboré AK, Olmos E, Fick M, Boudrant J, Goergen J, Delaunay S, Guedon E (2014) Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process. Biosci Biotechnol Biochem 78(2):343–349

    Article  CAS  Google Scholar 

  24. Kou X, Yang R, Zhao J, Lu J, Liu Y (2013) Enzymatic saccharification and l-lactic acid fermentation of corn stover pretreated with liquid hot water by Rhizopus oryzae. BioResources 8(4):4899–4911

    Google Scholar 

  25. Yamane T, Tanaka R (2013) Highly accumulative production of l (+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 115(1):90–95

    Article  CAS  Google Scholar 

  26. Zhang L, Li X, Yong Q, Yang S, Ouyang J, Yu S (2015) Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae. Biochem Eng J 94:92–99

    Article  CAS  Google Scholar 

  27. Kumar R, Shivakumar S (2014) Production of l-lactic acid from starch and food waste by amylolytic Rhizopus oryzae MTCC 8784. Int J Chem Technol Res 6(1):527–537

    CAS  Google Scholar 

  28. Taskin M, Esim N, Ortucu S (2012) Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food Bioprod Process 90(4):773–779

    Article  CAS  Google Scholar 

  29. Wang C, Lin C, Sheu D, Liu C (2014) l-lactic acid fermentation by culture of Rhizopus oryzae using ammonia as neutralizing agent. J Taiwan Inst Chem Eng 45(1):1–5

    Article  CAS  Google Scholar 

  30. Ma K, Maeda T, You H, Shirai Y (2015) Open fermentative production of l-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresour Technol 151:28–35

    Article  CAS  Google Scholar 

  31. Poudel P, Tashiro Y, Miyamoto H, Miyamoto H, Okugawa Y, Sakai K (2015) Direct starch fermentation to l-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07. J Ind Microbiol Biotechnol 42(1):143–149

    Article  CAS  Google Scholar 

  32. Hu J, Zhang Z, Lin Y, Zhao S, Mei Y, Liang Y, Peng N (2015) High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresour Technol 182:251–257

    Article  CAS  Google Scholar 

  33. Zhang Y, Chen X, Luo J, Qi B, Wan Y (2014) An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour Technol 158:396–399

    Article  CAS  Google Scholar 

  34. Ye L, Hudari MSB, Li Z, Wu JC (2014) Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem Eng J 83:16–21

    Article  CAS  Google Scholar 

  35. Abdel-Rahman MA, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2015) Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiol Lett 362(2):1–7

    Article  Google Scholar 

  36. Sun W, Liu J, Xu H, Li W, Zhang J (2015) l-Lactic acid fermentation by Enterococcus faecium: a new isolate from bovine rumen. Biotechnol Lett 37(7):1379–1383

    Article  CAS  Google Scholar 

  37. Watanabe M, Makino M, Kaku N, Koyama M, Nakamura K, Sasano K (2013) Fermentative l-(+)-lactic acid production from non-sterilized rice washing drainage containing rice bran by a newly isolated lactic acid bacteria without any additions of nutrients. J Biosci Bioeng 115(4):449–452

    Article  CAS  Google Scholar 

  38. Wang Y, Abdel-Rahman MA, Tashiro Y, Xiao Y, Zendo T, Sakai K, Sonomoto K (2014) l -(+)-lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Adv 4(42):22013–22021

    Article  CAS  Google Scholar 

  39. Zhang Y, Vadlani PV (2013) d-lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess Biosyst Eng 36(12):1897–1904

    Article  CAS  Google Scholar 

  40. Nguyen CM, Choi GJ, Choi YH, Jang KS, Kim JC (2013) d- and l-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochem Eng J 81:40–46

    Article  CAS  Google Scholar 

  41. Yang P, Tian Y, Wang Q, Cong W (2015) Effect of different types of calcium carbonate on the lactic acid fermentation performance of Lactobacillus lactis. Biochem Eng J 98:38–46

    Article  CAS  Google Scholar 

  42. Ilmén M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M (2007) Efficient production of l-lactic acid from xylose by Pichia stipits. Appl Environ Microbiol 73(1):117–123

    Article  CAS  Google Scholar 

  43. Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H (2005) Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl Environ Microbiol 71(4):1964–1970

    Article  CAS  Google Scholar 

  44. Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71(5):2789–2792

    Article  CAS  Google Scholar 

  45. Ducat DC, Way JC, Silve PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103

    Article  CAS  Google Scholar 

  46. Hirayama S, Ueda R (2004) Production of optically pure d-lactic acid by Nannochlorum sp. 26A4. Appl Biochem Biotechnol 199(1):71–77

    Article  Google Scholar 

  47. Angermayr SA, Paszota M, Hellingwerf KJ (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 78(19):7098–7106

    Article  CAS  Google Scholar 

  48. Varman AM, Yu Y, You L, Tang YJ (2013) Photoautotrophic production of d-lactic acid in an engineered cyanobacterium. Microb Cell Fact 12:117

    Article  CAS  Google Scholar 

  49. Akao S, Nagare H, Maeda M, Kondo K, Fujiwara T (2015) Combined use of sugars and nutrients derived from young maize plants for thermophilic l-lactic acid fermentation. Ind Crop Prod 69:440–446

    Article  CAS  Google Scholar 

  50. Qin J, Wang X, Zheng Z, Ma C, Tang H, Xu P (2010) Production of l-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresour Technol 101(19):7570–7576

    Article  CAS  Google Scholar 

  51. Wang Y, Cai D, He M, Wang Z, Qin P, Tan T (2015) Open fermentative production of l-lactic acid using white rice bran by simultaneous saccharification and fermentation. Bioresour Technol 198:664–672

    Article  CAS  Google Scholar 

  52. Tsuge Y, Hasunuma T, Kondo A (2015) Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources. J Ind Microbiol Biotechnol 42(3):375–389

    Article  CAS  Google Scholar 

  53. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78(3):449–454

    Article  CAS  Google Scholar 

  54. Tsuge Y, Yamamoto S, Kato N, Suda M, Vertès AA, Yukawa H, Inui M (2015) Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of d-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 99(11):4679–4689

    Article  CAS  Google Scholar 

  55. Wood BJB, Holzapfel WH (1995) The genera of lactic acid bacteria. Blackie Academic and Professional, Glasgow

    Book  Google Scholar 

  56. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1-2):131–149

    Article  CAS  Google Scholar 

  57. Lee CW (2007) Production of d-lactic acid by bacterial fermentation of rice. Fiber Polym 8(6):571–578

    Article  CAS  Google Scholar 

  58. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49(3):209–224

    Article  CAS  Google Scholar 

  59. Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21(6):269–274

    Article  CAS  Google Scholar 

  60. Buyondo JP, Liu S (2011) Lactic acid production by Lactobacillus pentosus from wood extract. J Sci Technol Forest Prod Process 1(3):38–47

    CAS  Google Scholar 

  61. Abdel-Rahman MA, Tashiro Y, Zendo T, Sonomoto K (2010) Isolation and characterization of novel lactic acid bacterium for efficient production of l (+)-lactic acid from xylose. J Biotechnol 150(1):S347

    Google Scholar 

  62. Abdel-Rahman MA, Tashiro Y, Zendo Hanada K, Shibata K, Sonomoto K (2011) Efficient homofermentative l (+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77(5):1892–1895

    Article  CAS  Google Scholar 

  63. Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PF (2002) Two different pathways for d-xylose metabolism and the effect of xylose concentration on the yield coefficient of l-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl Microbiol Biotechnol 60(1):160–167

    CAS  Google Scholar 

  64. John RP, Sukumaran RK, Nampoothiri KM, Pandey A (2007) Statistical optimization of simultaneous saccharification and l (+)-lactic acid fermentation from cassava bagasse using mixed culture of Lactobacilli by response surface methodology. Biochem Eng J 36(3):262–267

    Article  CAS  Google Scholar 

  65. Pleissner D, Venus J (2014) Agricultural residues as feedstocks for lactic acid fermentation. In: Green Technologies for the Environment. ACS Symposium Series, vol 1186. Am Chem Soc, pp 247–263

    Google Scholar 

  66. Wakai S, Yoshie T, Asai-Nakashima N, Yamada R, Ogino C, Tsutsumi H, Hata Y, Kondo A (2014) l-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresour Technol 173:376–383

    Article  CAS  Google Scholar 

  67. Smerilli M, Neureiter M, Wurz S, Haas C, Frühauf S, Fuchs W (2015) Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J Chem Technol Biotechnol 90(4):648–657

    Article  CAS  Google Scholar 

  68. Cingadi S, Srikanth K, EVR A, Sivaprakasam S (2015) Statistical optimization of cassava fibrous waste hydrolysis by response surface methodology and use of hydrolysate based media for the production of optically pure d-lactic acid. Biochem Eng J 102:82–90

    Article  CAS  Google Scholar 

  69. Xu K, Xu P (2014) Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol 153:23–29

    Article  CAS  Google Scholar 

  70. Mladenović DD, Djukić-Vuković AP, Kocić-Tanackov SD, Pejin JD, Mojović LV (2015) Lactic acid production on a combined distillery stillage and sugar beet molasses substrate. J Chem Technol Biotechnol. doi:10.1002/jctb.4838

    Google Scholar 

  71. Hama S, Mizuno S, Kihara M, Tanaka T, Ogino C, Noda H, Kondo A (2015) Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresour Technol 187:167–172

    Article  CAS  Google Scholar 

  72. Zhang Y, Vadlani PV, Kumar A, Hardwidge PR, Govind R, Tanaka T, Kondo A (2016) Enhanced d-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 100(1):279–288

    Article  CAS  Google Scholar 

  73. Ahring BK, Traverso JJ, Murali N, Srinivas K (2016) Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 109:162–169

    Article  CAS  Google Scholar 

  74. Kuo Y, Yuan S, Wang C, Huang Y, Guo G, Hwang W (2015) Production of optically pure l-lactic acid from lignocellulosic hydrolysate by using a newly isolated and d-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour Technol 198:651–657

    Article  CAS  Google Scholar 

  75. Petrova P, Velikova P, Popova L, Petrov K (2015) Direct conversion of chicory flour into l (+)-lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505. Bioresour Technol 186:329–333

    Article  CAS  Google Scholar 

  76. Pejin J, Radosavljević M, Mojović L, Kocić-Tanackov S, Djukić-Vuković A (2015) The influence of calcium-carbonate and yeast extract addition on lactic acid fermentation of brewer’s spent grain hydrolysate. Food Res Int 73:31–37

    Article  CAS  Google Scholar 

  77. Kuda T, Eda M, Kataoka M, Nemoto M, Kawahara M, Oshio S, Takahashi H, Kimura B (2016) Anti-glycation properties of the aqueous extract solutions of dried algae products and effect of lactic acid fermentation on the properties. Food Chem 192:1109–1115

    Article  CAS  Google Scholar 

  78. Mazumdar S, Bang J, Oh MK (2014) l-lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl Biochem Biotechnol 172(4):1938–1952

    Article  CAS  Google Scholar 

  79. Shibata K, Flores DM, Kobayashi G, Sonomoto K (2007) Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microbiol Technol 41(1–2):149–155

    Article  CAS  Google Scholar 

  80. Narita J, Nakahara S, Fukuda H, Kondo A (2004) Efficient production of l-(+)-lactic acid from raw starch by Streptococcus bovis 148. J Biosci Bioeng 97(6):423–425

    Article  CAS  Google Scholar 

  81. Altaf M, Naveena BJ, Venkateshwar M, Kumar EV, Reddy G (2006) Single step fermentation of starch to l (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract –optimization by RSM. Process Biochem 41(2):465–472

    Article  CAS  Google Scholar 

  82. Wee YJ, Kim JN, Yun JS, Ryu HW (2004) Utilization of sugar molasses for economical l (+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme Microb Technol 35(6-7):568–573

    Article  CAS  Google Scholar 

  83. Kotzamanidis C, Roukas T, Skaracis G (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J Microbiol Biotechnol 18(5):441–448

    Article  CAS  Google Scholar 

  84. Aksu Z, Kutsal T (1986) Lactic acid production from molasses utilizing Lactobacillus Delbrueckii and invertase together. Biotechnol Lett 8(3):157–160

    Article  CAS  Google Scholar 

  85. Garde A, Jonsson G, Schmidt AS, Ahring BK (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentoses and Lactobacillus brevis. Bioresour Technol 81(3):217–223

    Article  CAS  Google Scholar 

  86. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52(2):858–875

    Article  CAS  Google Scholar 

  87. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619

    Article  CAS  Google Scholar 

  88. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  89. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energy Rev 27:77–93

    Article  CAS  Google Scholar 

  90. Dyk JSV, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480

    Article  CAS  Google Scholar 

  91. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod Bior 1(2):119–134

    Article  CAS  Google Scholar 

  92. Li C, Zhang GF, Mao X, Wang JY, Duan CY, Wang ZJ, Liu LB (2016) Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass. J Dairy Sci 99(6):4243–4250

    Article  CAS  Google Scholar 

  93. Gao MT, Shimamura T, Ishida N, Takahashi H (2012) Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel. J Biosci Bioeng 114(3):330–333

    Article  CAS  Google Scholar 

  94. Gupta S, Abu-Ghannam N, Scannell AGM (2011) Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds. Food Bioprod Process 89(4):346–355

    Article  CAS  Google Scholar 

  95. Nguyen CM, Kim J, Hwang HJ, Park MS, Choi GJ, Choi YH, Jang KS, Kim J (2012) Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour Technol 110:552–559

    Article  CAS  Google Scholar 

  96. Talukder MMR, Das P, Wu JC (2012) Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem Eng J 68:109–113

    Article  CAS  Google Scholar 

  97. Shi S, Kang L, Lee YY (2015) Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 175(5):2741–2754

    Article  CAS  Google Scholar 

  98. Cui F, Li Y, Wan C (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol 102(2):1831–1836

    Article  CAS  Google Scholar 

  99. Guo W, Jia W, Li Y, Chen S (2010) Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. App Biochem Biotechnol 161(1–8):124–136

    Article  CAS  Google Scholar 

  100. Guo W, He R, Ma L, Jia W, Li D, Chen S (2014) Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 98(15):6641–6650

    Article  CAS  Google Scholar 

  101. Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  CAS  Google Scholar 

  102. Alriksson B, Cavka A, Jönsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresour Technol 102(2):1254–1263

    Article  CAS  Google Scholar 

  103. Alriksson B, Sjöde A, Nilvebrant N, Jönsson LJ (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 130(1–3):599–611

    Article  Google Scholar 

  104. Zhao K, Qiao Q, Chu D, Gu H, Dao TH, Zhang J, Bao J (2013) Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresour Technol 135:481–489

    Article  CAS  Google Scholar 

  105. Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227

    Article  CAS  Google Scholar 

  106. Gavilà L, Constantí M, Medina F (2015) d-Lactic acid production from cellulose: dilute acid treatment of cellulose assisted by microwave followed by microbial fermentation. Cellulose 22(5):3089–3098

    Article  CAS  Google Scholar 

  107. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114

    Article  CAS  Google Scholar 

  108. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  Google Scholar 

  109. Kim JH, Block DE, Mills DA (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 88(5):1077–1085

    Article  CAS  Google Scholar 

  110. Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85(3):471–480

    Article  CAS  Google Scholar 

  111. Wang L, Zhao B, Liu B, Yu B, Ma C, Su F, Hua D, Li Q, Ma Y, Xu P (2010) Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresour Technol 101:7908–7915

    Article  CAS  Google Scholar 

  112. Yun JS, Ryu HW (2001) Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochem 37(3):235–240

    Article  CAS  Google Scholar 

  113. Monedero V, Gosalbes MJ, Pérez-Martínez G (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by ccpA. J Bacteriol 179(21):6657–6664

    Article  CAS  Google Scholar 

  114. Veyrat A, Monedero V, Perez-Martinez G (1994) Glucose transport by the phosphoenolpyruvate: mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141–1149

    Article  CAS  Google Scholar 

  115. Mahr K, Hillen W, Titgemeyer F (2000) Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region. Appl Environ Microbiol 66(1):277–283

    Article  CAS  Google Scholar 

  116. Tan JM, Abdel-Rahman MA, Numaguchi M, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2016) Homo-fermentative L-lactic acid production from mixed sugars without carbon catabolite repression and by-products using themophilic Enterococcus faecium QU 50. RSC Ad (submitted)

    Google Scholar 

  117. Taniguchi M, Tokunaga T, Horiuchi K, Hoshino K, Sakai K, Tanaka T (2004) Production of l-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Appl Microbiol Biotechnol 66(2):160–165

    Article  CAS  Google Scholar 

  118. Yoshida S, Okano K, Tanaka T, Ogino C, Kondo A (2011) Homo-d-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol 92(1):67–76

    Article  CAS  Google Scholar 

  119. Ouyang J, Cai C, Chen H, Jiang T, Zheng Z (2012) Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01. Appl Biochem Biotechnol 168(8):2387–2397

    Article  CAS  Google Scholar 

  120. Shinkawa S, Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl Microbiol Biotechnol 91(6):1537–1544

    Article  CAS  Google Scholar 

  121. Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20(1):103–110

    Article  CAS  Google Scholar 

  122. Abdel-Rahman MA, Tashiro Y, Zendo T, Sonomoto K (2013) Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Adv 3(22):8437–8445

    Article  CAS  Google Scholar 

  123. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  124. Jagatee S, Behera S, Dash PK, Sahoo S, Mohanty RC (2015) Bioprospecting starchy feedstocks for bioethanol production: a future perspective. J Microbiol Res Rev 3(3):24–42

    Google Scholar 

  125. Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126(4):488–498

    Article  CAS  Google Scholar 

  126. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  127. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  128. Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44(5):540–545

    Article  CAS  Google Scholar 

  129. Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microbiol Technol 40(3):426–432

    Article  CAS  Google Scholar 

  130. Schmidt AS, Thomsen AB (1997) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64(2):139–151

    Article  Google Scholar 

  131. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  CAS  Google Scholar 

  132. Zhang DX, Cheryan M (1991) Direct fermentation of starch to lactic acid by Lactobacillus amylovorus. Biotechnol Lett 13(10):733–738

    Article  CAS  Google Scholar 

  133. Olympia M, Fukuda H, Ono H, Kaneko Y, Takano M (1995) Characterization of starch-hydrolyzing lactic acid bacteria isolated from a fermented fish and rice food, “Burong Isda”, and its amylolytic enzyme. J Ferment Bioeng 80(2):124–130

    Article  CAS  Google Scholar 

  134. Agati V, Guyot JP, Morlon-Guyot J, Talamond P, Hounhouigan DJ (1998) Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. J Appl Microbiol 85(3):512–520

    Article  CAS  Google Scholar 

  135. Vishnu C, Seenayya G, Reddy G (2000) Direct conversion of starch to l (+) lactic acid by amylase producting Lactobacillus amylophilus GV6. Bioprocess Eng 23(2):155–158

    Article  CAS  Google Scholar 

  136. Horváthová V, Janeček Š, Šturdík E (2001) Amylolytic enzymes: molecular aspects of their properties. Gen Physiol Biophys 20(1):7–32

    Google Scholar 

  137. van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94(2):137–155

    Article  Google Scholar 

  138. Linko YY, Javanainen P (1996) Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzyme Microbiol Technol 19(2):118–123

    Article  CAS  Google Scholar 

  139. Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97(2):287–296

    Article  CAS  Google Scholar 

  140. Nguyen CM, Kim J, Song JK, Choi GJ, Choi YH, Jang KS, Kim J (2012) d-lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 34(12):2235–2240

    Article  CAS  Google Scholar 

  141. Abdel-Rahman MA, Xiao Y, Tashiro YM, Wang Y, Zendo T, Sakai K, Sonomoto K (2015) Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. J Biosci Bioeng 119(2):153–158

    Article  CAS  Google Scholar 

  142. Choi M, Al-Zahrani SM, Lee SY (2014) Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice. Bioprocess Biosyst Eng 37(6):1007–1015

    Article  CAS  Google Scholar 

  143. Abdel-Rahman MA, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2016) Highly efficient l-lactic acid production from xylose in cell recycle continuous fermentation using Enterococcus mundtii QU 25. RSC Adv 6(21):17659–17668

    Article  CAS  Google Scholar 

  144. Mimitsuka T, Sawai K, Kobayashi K, Tsukada T, Takeuchi N, Yamada K, Ogino H, Yonehara T (2015) Production of d-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in d-lactic acid carbon yield. J Biosci Bioeng 119(1):65–71

    Article  CAS  Google Scholar 

  145. Marques S, Alves LM, Gírio FM, Santos JAL, Roseiro JC (2009) Biological upgrading of wastes from the pulp and paper industry. NWBC, Helsinki, Finland, 2–4 September

    Google Scholar 

  146. Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107

    Article  CAS  Google Scholar 

  147. Rani KY, Rao VSR (1999) Control of fermenters – a review. Bioprocess Eng 21(1):77–88

    Article  Google Scholar 

  148. Xu G, Chu J, Wang Y, Zhuang Y, Zhang S, Peng H (2006) Development of a continuous cell-recycle fermentation system for production of lactic acid by Lactobacillus paracasei. Process Biochem 41(12):2458–2463

    Article  CAS  Google Scholar 

  149. Peng L, Chen Y (2011) Conversion of paper sludge to ethanol by separate hydrolysis and fermentation (SHF) using Saccharomyces cerevisiae. Biomass Bioenergy 35(4):1600–1606

    Article  CAS  Google Scholar 

  150. Iyer PV, Lee YY (1999) Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermentor-extractor system. Appl Biochem Biotechnol 78(1):409–419

    Article  Google Scholar 

  151. Ojeda K, Sánchez E, El-Halwagi M, Kafarov V (2011) Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways. Chem Eng J 176–177:195–201

    Article  CAS  Google Scholar 

  152. Lee SM, Koo YM, Lin J (2004) Production of lactic acid from paper sludge by simultaneous saccharification and fermentation. Adv Biochem Eng 87:173–194

    CAS  Google Scholar 

  153. Stenberg K, Galbe M, Zacchi G (2000) The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol. Enzyme Microbiol Technol 26(1):71–79

    Article  CAS  Google Scholar 

  154. Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227

    Article  CAS  Google Scholar 

  155. Martinez FAC, Balciunas EM, Salgado JM, González ZMD, Convertic A, Oliveira RPdS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83

    Article  CAS  Google Scholar 

  156. Pleissner D, Venus J (2016) Utilization of protein-rich residues in biotechnological processes. Appl Microbiol Biotechnol 100(5):2133–2140

    Article  CAS  Google Scholar 

  157. Hujanen M, Linko YY (1996) Effect of temperature and various nitrogen sources on l (+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol 45(3):307–313

    Article  CAS  Google Scholar 

  158. Yu L, Lei T, Ren X, Pei X, Feng Y (2008) Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem Eng J 39(3):496–502

    Article  CAS  Google Scholar 

  159. Tang Y, Bu L, He J, Jiang J (2013) l-lactic acid production from furfural residues and corn kernels with treated yeast as nutrients. Eur Food Res Technol 236(2):365–371

    Article  CAS  Google Scholar 

  160. Naveena BJ, Altaf M, Bhadrayya K, Madhavendra SS, Reddy G (2005) Direct fermentation of starch to l (+)-lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM. Process Biochem 40(2):681–690

    Article  CAS  Google Scholar 

  161. Kwon S, Lee PC, Lee EG, Chang YK, Chang N (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microbiol Technol 26(2–4):209–215

    Article  CAS  Google Scholar 

  162. Dicks LMT, Dellaglio F, Collins MD (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 45(2):395–397

    Article  CAS  Google Scholar 

  163. Yokaryo H, Tokiwa Y (2014) Isolation of alkaliphilic bacteria for production of high optically pure l-(+)-lactic acid. J Gen Appl Microbiol 60(6):270–275

    Article  CAS  Google Scholar 

  164. Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K (2011) Isolation and characterization of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol 89(4):1039–1049

    Article  CAS  Google Scholar 

  165. Nakano S, Ugwu CU, Tokiwa Y (2012) Efficient production of d-(–)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresour Technol 104:791–794

    Article  CAS  Google Scholar 

  166. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K (2005) High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. J Biotechnol 120(2):197–206

    Article  CAS  Google Scholar 

  167. John RP, Nampoothiri KM (2011) Co-culturing of Lactobacillus paracasei subsp. paracasei with a Lactobacillus delbrueckii subsp. delbrueckii mutant to make high cell density for increased lactate productivity from cassava bagasse hydrolysate. Curr Microbiol 62(3):790–794

    Article  CAS  Google Scholar 

  168. Wee Y, Ryu HW (2009) Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresour Technol 100(18):4262–4270

    Article  CAS  Google Scholar 

  169. Senthuran A, Senthuran V, Hatti-Kaul R, Mattiasson B (1999) Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: a step towards optimization. J Biotechnol 73(1):61–70

    Article  CAS  Google Scholar 

  170. Murakami N, Oba M, Iwamoto M, Tashiro Y, Takuya N, Bonkohara K, Abdel-Rahman MA, Zendo T, Shimoda M, Sakai K, Sonomoto K (2016) l-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. J Biosci Bioeng 121(1):89–95

    Article  CAS  Google Scholar 

  171. Oshiro M, Hanada K, Tashiro Y, Sonomoto K (2010) Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol 87(3):1177–1185

    Article  CAS  Google Scholar 

  172. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98(4):263–268

    Article  CAS  Google Scholar 

  173. Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104(3):238–240

    Article  CAS  Google Scholar 

  174. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies-a review. J Chem Technol Biotechnol 81(7):1119–1129

    Article  CAS  Google Scholar 

  175. Komesu A, Martinez PFM, Lunelli BH, Filho RM, Maciel MRW (2015) Lactic acid purification by reactive distillation system using design of experiments. Chem Eng Process 95:26–30

    Article  CAS  Google Scholar 

  176. Tonova K, Svinyarov I, Bogdanov MG (2014) Hydrophobic-3-alkyl-1-methylimidazolium saccharinates as extractants for l-lactic acid recovery. Sep Purif Technol 125:239–246

    Article  CAS  Google Scholar 

  177. Wu J, Hu Y, Zhou J, Qian W, Lin X, Chen Y, Chen X, Xie J, Bai J, Ying H (2012) Separation of d-lactic acid from aqueous solutions based on the adsorption technology. Colloids Surf A Physicochem Eng Asp 407:29–37

    Article  CAS  Google Scholar 

  178. Patnaik PR (1995) Liquid emulsion membranes: principles, problems and application in fermentation processes. Biotechnol Adv 13(2):175–208

    Google Scholar 

  179. Chen GQ, Eschbach FII, Weeks M, Gras SL, Kentish SE (2016) Removal of lactic acid from acid whey using electrodialysis. Sep Purif Technol 158:230–237

    Article  CAS  Google Scholar 

  180. Wang X, Wang Y, Zhang X, Feng H, Xu T (2013) In-situ combination of fermentation and electrodialysis with biopolar membranes of the production of lactic acid: continuous operation. Bioresour Technol 147:442–448

    Article  CAS  Google Scholar 

  181. Neu A, Pleissner D, Mehlmann K, Schneider R, Puerta-Quintero GI, Venus J (2016) Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l (+)-lactic acid production. Bioresour Technol 211:398–405

    Article  CAS  Google Scholar 

  182. Li Y, Shahbazi A, Williams K, Wan C (2008) Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes. Appl Biochem Biotechnol 147(1–3):1–9

    Article  CAS  Google Scholar 

  183. Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Membrane Sci 288(1-2):1–12

    Article  CAS  Google Scholar 

  184. Madzingaidzo L, Danner H, Braun R (2002) Process development and optimisation of lactic acid purification using electrodialysis. J Biotechnol 96(3):223–239

    Article  CAS  Google Scholar 

  185. Bazinet L, Lamarche F, Ippersiel D (1998) Bipolar-membrane electrodialysis: applications of electrodialysis in the food industry. Trends Food Sci Technol 9(3):107–113

    Article  CAS  Google Scholar 

  186. Wang X, Wang Y, Zhang X, Xu T (2012) In situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: operational compatibility and uniformity. Bioresour Technol 125:165–171

    Article  CAS  Google Scholar 

  187. Li H, Mustacchi R, Knowles CJ, Skibar W, Sunderland G, Dalrymple I, Jackman SA (2004) An electrokinetic bioreactor: using direct electric current for enhanced lactic acid fermentation and product recovery. Tetrahedron 60(3):655–661

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sonomoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tan, J., Abdel-Rahman, M.A., Sonomoto, K. (2017). Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product. In: Di Lorenzo, M., Androsch, R. (eds) Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science, vol 279. Springer, Cham. https://doi.org/10.1007/12_2016_11

Download citation

Publish with us

Policies and ethics