Skip to main content

Interfacial Tension in Binary Polymer Blends and the Effects of Copolymers as Emulsifying Agents

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 238))

Abstract

The structure and the thermodynamic state of polymeric interfaces are important features in many materials of technological interest. This is especially true for multiconstituent systems such as blends of immiscible polymers, where the interface structure can affect greatly their morphology and, thus, their mechanical properties. In this article, we first present a review of the experimental and theoretical investigations of the interfacial tension in phase-separated homopolymer blends. We emphasize the effects of temperature and molecular weight on the behavior: interfacial tension γ decreases with increasing temperature (for polymer systems exhibiting upper critical solution temperature behavior) with a temperature coefficient of the order of 10–2 dyn/(cm °C), whereas it increases with increasing molecular weight. The increase follows a \(\gamma = \gamma _\infty \left( {1 - k_{\operatorname{int} } M_{\text{n}}^{ - z} } \right)\) dependence (with z ≈ 1 for high molecular weights), where γ is the limiting interfacial tension at infinite molecular weight and M n the number average molecular weight. Suitably chosen block or graft copolymers are widely used in blends of immiscible polymers as compatibilizers for controlling the morphology (phase structure) and the interfacial adhesion between the phases. The compatabilitizing effect is due to their interfacial activity, i.e., to their affinity to selectively segregate to the interface between the phase-separated homopolymers, thus reducing the interfacial tension between the two macrophases. The experimental and theoretical works in this area are reviewed herein. The effects of concentration, molecular weight, composition, and macromolecular architecture of the copolymeric additives are discussed. An issue that can influence the efficient utilization of a copolymeric additive as an emulsifier is the possibility of micelle formation within the homopolymer matrices when the additive is mixed with one of the components. These micelles will compete with the interfacial region for copolymer chains. A second issue relates to the possible trapping of copolymer chains at the interface, which can lead to stationary states of partial equilibrium. The in-situ formation of copolymers by the interfacial reaction of functionalized homopolymers is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is noted that Noolandi [288] objects to the use of (107) and (112) because he claims that the main contribution to the interfacial tension reduction is of enthalpic and not entropic origin (as (112) suggests), i.e., that it is due to the favorable energetics of the orientation of the copolymer blocks into their respective homopolymers and that entropic effects are second order. He suggests that (107) should be corrected by adding the contributions of the orientational entropy of the blocks and their entropy of localization. The latter was introduced by Shull and Kramer [77] by replacing γ 0 by \(\gamma \prime_0 = \gamma _0 + \sigma k_B T\ln \left[ {\left( {L_A + L_B } \right)/d\prime} \right]\). In the present analysis, the expression of Leibler [75, 76, 40] is utilized.

  2. 2.

    For polymer blends exhibiting lower critical solution temperature (LCST) behavior, e.g., the system polystyrene/poly(vinyl methyl ether), one may anticipate the opposite behavior for purely phenomenological reasons. Interfacial tension should increase with increasing temperature in the two-phase region since the tie lines become longer with increasing temperature in that case

References

  1. Paul DR, Newman S (eds) (1978) Polymer blends. Academic, New York

    Google Scholar 

  2. Paul DR, Bucknall CB (eds) (2000) Polymer blends set: formulation and performance. Wiley, New York

    Google Scholar 

  3. Hancock T (1823) English Patent 6:768

    Google Scholar 

  4. Hancock T (1823) English Patent 11:147

    Google Scholar 

  5. White JL, Min K (1985) Processing and phase morphology of incompatible polymer blends. In: Walsh DJ, Higgins JS, Maconnachie A (eds) Polymer blends and mixtures. Mortinus Nijhoff, Dordrecht, The Netherlands, pp 413–428

    Google Scholar 

  6. Utracki LA (ed) (1986) Polyblends-’86, NRCC/IMRI polymers symposium series. NRCC/IMRI, Montreal

    Google Scholar 

  7. Wu S (1986) Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects. In: Utracki LA (ed) Polyblends-’86, NRCC/IMRI polymers symposium series. NRCC/IMRI, Montreal, pp 4/1–42

    Google Scholar 

  8. Fortenlý I, Živný A, Juza J (1999) Coarsening of the phase structure in immiscible polymer blends. Coalescence or Ostwald ripening? J Polym Sci B Polym Phys 37:181–187

    Article  Google Scholar 

  9. Jaycock MJ, Parfitt GD (1985) Chemistry of interfaces. Ellis Horwood, Chichester, UK

    Google Scholar 

  10. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  11. Miller CA, Neogi P (1985) Interfacial phenomena: equilibrium and dynamic effects. Marcel Dekker, New York

    Google Scholar 

  12. Feast WJ, Munro HS (eds) (1987) Polymer surfaces and interfaces. Wiley, New York

    Google Scholar 

  13. Feast WJ, Munro HS, Richards RW (eds) (1993) Polymer surfaces and interfaces II. Wiley, New York

    Google Scholar 

  14. Richards RW, Peace SK (eds) (1999) Polymer surfaces and interfaces III. Wiley, New York

    Google Scholar 

  15. Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman and Hall, London

    Google Scholar 

  16. Jones RAL, Richards RW (1999) Polymers at surfaces and interfaces. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  17. Karim A, Kumar SK (eds) (2000) Polymer surfaces, interfaces and thin films. World Scientific, Singapore

    Google Scholar 

  18. Stamm M (ed) (2008) Polymer surfaces and interfaces: characterization, modification and applications. Springer, Berlin

    Google Scholar 

  19. Anastasiadis SH, Chen JK, Koberstein JT, Sohn JE, Emerson JA (1986) The determination of polymer interfacial tension by drop image processing: comparison of theory and experiment for the pair PDMS/PBD. Polym Eng Sci 26:1410–1418

    Article  CAS  Google Scholar 

  20. Anastasiadis SH, Gancarz I, Koberstein JT (1988) Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules 21:2980–2987

    Article  CAS  Google Scholar 

  21. Kamal MR, Lai-Fook R, Demarquette NR (1994) Interfacial tension in polymer melts. Part II: Effects of temperature and molecular weight on interfacial tension. Polym Eng Sci 34:1834–1839

    Article  CAS  Google Scholar 

  22. Kamal MR, Demarquette NR, Lai-Fook R, Price TA (1997) Evaluation of thermodynamic theories to predict interfacial tension between polystyrene and polypropylene melts. Polym Eng Sci 37:813–825

    Article  CAS  Google Scholar 

  23. Arashiro EY, Demarquette NR (1999) Influence of temperature, molecular weight, and polydispersity of polystyrene on interfacial tension between low-density polyethylene and polystyrene. J Appl Polym Sci 74:2423–2431

    Article  CAS  Google Scholar 

  24. Biresaw G, Carriere CJ, Sammler RL (2003) Effect of temperature and molecular weight on the interfacial tension of PS/PDMS blends. Rheol Acta 42:142–147

    Article  CAS  Google Scholar 

  25. Ellingson PC, Strand DA, Cohen A, Sammler RL, Carriere CJ (1994) Molecular weight dependence of polystyrene/poly(methyl methacrylate) interfacial tension probed by imbedded-fiber retraction. Macromolecules 27:1643–1647

    Article  CAS  Google Scholar 

  26. Nam KH, Jo WH (1995) The effect of molecular weight and polydispersity of polystyrene on the interfacial tension between polystyrene and polybutadiene. Polymer 36:3727–3731

    Article  CAS  Google Scholar 

  27. Helfand E, Tagami Y (1972) Theory of the interface between immiscible polymers II. J Chem Phys 56:3592–3601

    Article  CAS  Google Scholar 

  28. Helfand E, Tagami Y (1972) Theory of the interface between immiscible polymers. J Chem Phys 57:1812–1813

    Article  Google Scholar 

  29. Helfand E, Sapse AM (1975) Theory of unsymmetric polymer–polymer interfaces. J Chem Phys 62:1327–1331

    Article  CAS  Google Scholar 

  30. Helfand E, Bhattacharjee SM, Fredrickson GH (1989) Molecular weight dependence of polymer interfacial tension and concentration profile. J Chem Phys 91:7200–7208

    Article  CAS  Google Scholar 

  31. Broseta D, Fredrickson GH, Helfand E, Leibler L (1990) Molecular weight and polydispersity effects at polymer–polymer interfaces. Macromolecules 23:132–139

    Article  CAS  Google Scholar 

  32. Tang H, Freed KF (1991) Interfacial studies of incompressible binary blends. J Chem Phys 94:6307–6322

    Article  CAS  Google Scholar 

  33. Ermonskin AV, Semenov AN (1996) Interfacial tension in binary polymer mixtures. Macromolecules 29:6294–6300

    Article  Google Scholar 

  34. Lee HS, Jo WH (1998) Prediction of interfacial tension of immiscible polymer pairs using a square gradient theory combined with the FOV equation-of-state free energy expression. Polymer 39:2489–2493

    Article  CAS  Google Scholar 

  35. Jo WH, Lee HS, Lee SC (1998) Temperature and molecular weight dependence of interfacial tension between immiscible polymer pairs by the square gradient theory combined with the Flory-Orwoll-Vrij equation-of-state theory. J Polym Sci B Polym Phys 36:2683–2689

    Article  Google Scholar 

  36. Koning C, Van Duin M, Pagnoulle C, Jérôme R (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757

    Article  CAS  Google Scholar 

  37. Fayt R, Jérôme R, Teyssié Ph (1986) Molecular design of multicomponent polymer systems. XII. Direct observation of the location of a block copolymer in low-density polyethylene-polystyrene blends. J Polym Sci Polym Lett 24:25–28

    CAS  Google Scholar 

  38. Shull KR, Kramer EJ, Hadziioannou G, Tang W (1990) Segregation of block copolymers to interfaces between immiscible homopolymers. Macromolecules 23:4780–4787

    Article  CAS  Google Scholar 

  39. Russell TP, Anastasiadis SH, Menelle A, Felcher G, Satija SK (1991) Segment density distribution of symmetric diblock copolymers at the interface between two homopolymers as revealed by neutron reflectivity. Macromolecules 24:1575–1582

    Article  CAS  Google Scholar 

  40. Green PF, Russell TP (1991) Segregation of low molecular weight symmetric diblock copolymers at the interface of high molecular weight homopolymers. Macromolecules 24:2931–2935

    Article  CAS  Google Scholar 

  41. Dai KH, Kramer EJ (1994) Molecular weight dependence of diblock copolymer segregation at a polymer/polymer interface. J Polym Sci B Polym Phys 32:1943–1950

    Article  CAS  Google Scholar 

  42. Dai KH, Norton LJ, Kramer EJ (1994) Equilibrium segment density distribution of a diblock copolymer segregated to the polymer/polymer interface. Macromolecules 27:1949–1956

    Article  CAS  Google Scholar 

  43. Reynolds BJ, Ruegg ML, Mates TE, Radke CJ, Balsara NP (2005) Experimental and theoretical study of the adsorption of a diblock copolymer to interfaces between two homopolymers. Macromolecules 38:3872–3882

    Article  CAS  Google Scholar 

  44. Eastwood E, Viswanathan S, O'Brien CP, Kumar D, Dadmun MD (2005) Methods to improve the properties of polymer mixtures: optimizing intermolecular interactions and compatibilization. Polymer 46:3957–3970

    Article  CAS  Google Scholar 

  45. Anastasiadis SH, Gancarz I, Koberstein JT (1989) Compatibilizing effect of block copolymers added to the polymer/polymer interface. Macromolecules 22:1449–1453

    Article  CAS  Google Scholar 

  46. Elemans PHM, Janssen JMH, Meijer HEH (1990) The measurement of interfacial tension in polymer/polymer systems: the breaking thread method. J Rheol 34:1311–1325

    Article  Google Scholar 

  47. Wagner M, Wolf BA (1993) Effect of block copolymers on the interfacial tension between two ‘immiscible’ homopolymers. Polymer 34:1460–1464

    Article  CAS  Google Scholar 

  48. Hu W, Koberstein JT, Lingelser JP, Gallot Y (1995) Interfacial tension reduction in polystyrene/ poly(dimethyl siloxane) blends by the addition of poly(styrene-b-dimethylsiloxane). Macromolecules 28:5209–5214

    Article  CAS  Google Scholar 

  49. Jorzik U, Wagner M, Wolf BA (1996) Effect of block copolymer architecture on the interfacial tension between immiscible polymers. Prog Colloid Polym Sci 101:170–171

    Article  CAS  Google Scholar 

  50. Jorzik U, Wolf BA (1997) Reduction of the interfacial tension between poly(dimethylsiloxane) and poly(ethylene oxide) by block copolymers: effects of molecular architecture and chemical composition. Macromolecules 30:4713–4718

    Article  CAS  Google Scholar 

  51. Mekhilef N, Favis BD, Carreau PJ (1997) Morphological stability, interfacial tension, and dual-phase continuity in polystyrene–polyethylene blends. J Polym Sci B Polym Phys 35:293–308

    Article  CAS  Google Scholar 

  52. Liang H, Favis BD, Yu YS, Eisenberg A (1999) Correlation between the interfacial tension and dispersed phase morphology in interfacially modified blends of LLDPE and PVC. Macromolecules 32:1637–1642

    Article  CAS  Google Scholar 

  53. Cho D, Hu W, Koberstein JT, Lingelser JP, Gallot Y (2000) Segregation dynamics of block copolymers to immiscible polymer blend interfaces. Macromolecules 33:5245–5251

    Article  CAS  Google Scholar 

  54. Welge I, Wolf BA (2001) Reduction of the interfacial tension between ‘immiscible’ polymers: to which phase one should add a compatibilizer. Polymer 42:3467–3473

    Article  CAS  Google Scholar 

  55. Retsos H, Margiolaki I, Messaritaki A, Anastasiadis SH (2001) Interfacial tension in binary polymer blends in the presence of block copolymers: effects of additive MW. Macromolecules 34:5295–5305

    Article  CAS  Google Scholar 

  56. Retsos H, Anastasiadis SH, Pispas S, Mays JW, Hadjichristidis N (2004) Interfacial tension in binary polymer blends in the presence of block copolymers: II. Effects of additive architecture and composition. Macromolecules 37:524–537

    Article  CAS  Google Scholar 

  57. Shi T, Ziegler VE, Welge IC, An L, Wolf BA (2004) Evolution of the interfacial tension between polydisperse ‘immiscible’ polymers in the absence and in the presence of a compatibilizer. Macromolecules 37:1591–1599

    Article  CAS  Google Scholar 

  58. Chang K, Macosko CW, Morse DC (2007) Ultralow interfacial tensions of polymer/polymer interfaces with diblock copolymer surfactants. Macromolecules 40:3819–3830

    Article  CAS  Google Scholar 

  59. Seo Y, Kang T, Choi HJ, Cho J (2007) Electrocapillary wave diffraction measurement of interfacial tension reduction between two oligomers (poly(dimethyl siloxane) and poly(ethylene glycol)) by a block copolymer and the mean-field theory prediction. J Phys Chem C 111:5474–5480

    Article  CAS  Google Scholar 

  60. van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interface Sci 6:457–463

    Article  CAS  Google Scholar 

  61. Sundararaj U, Macosco CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657

    Article  CAS  Google Scholar 

  62. Heikens D, Barentsen WM (1977) Particle dimensions in polystyrene/polyethylene blends as a function of their melt viscosity and of the concentration of added graft copolymer. Polymer 18:69–72

    Article  CAS  Google Scholar 

  63. Fayt R, Jérôme R, Teyssié Ph (1981) Molecular design of multicomponent polymer systems. I. Emulsifying effect of poly(hydrogenated butadiene-b-styrene) copolymers in LDPE/PS blends. J Polym Sci Polym Lett 19:79–84

    Article  CAS  Google Scholar 

  64. Thomas S, Prud’homme RE (1992) Compatibilizing effect of block copolymers in heterogeneous polystyrene/poly(methyl methacrylate) blends. Polymer 33:4260–4268

    Article  CAS  Google Scholar 

  65. Tang T, Huang B (1994) Interfacial behaviour of compatibilizers in polymer blends. Polymer 35:281–285

    Article  CAS  Google Scholar 

  66. Macosco CW, Guegan P, Khandpur A, Nakayama A, Marechal P, Inoue T (1996) Compatibilizers for melt blending: premade block copolymers. Macromolecules 29:5590–5598

    Article  Google Scholar 

  67. Brown H, Char K, Deline VR, Green PF (1993) Effects of a diblock copolymer on adhesion between immiscible polymers. 1. Polystyrene (PS)-PMMA copolymer between PS and PMMA. Macromolecules 26:4155–4163

    Article  CAS  Google Scholar 

  68. Dai C-A, Jandt KD, Iyengar DR, Slack NL, Dai KH, Davidson WB, Kramer EJ, Hui C-Y (1997) Strengthening polymer interfaces with triblock copolymers. Macromolecules 30:549–560

    Article  CAS  Google Scholar 

  69. Russell TP, Menelle A, Hamilton WA, Smith GS, Satija SK, Majkrzak CF (1991) Width of homopolymer interfaces in the presence of symmetric diblock copolymers. Macromolecules 24:5721–5726

    Article  CAS  Google Scholar 

  70. Noolandi J, Hong KM (1982) Interfacial properties of immiscible homopolymer blends in the presence of block copolymers. Macromolecules 15:482–492

    Article  CAS  Google Scholar 

  71. Noolandi J, Hong KM (1984) Effect of block copolymers at a demixed homopolymer interface. Macromolecules 17:1531–1537

    Article  CAS  Google Scholar 

  72. Duke TAJ (1989) Ph.D. dissertation, University of Cambridge, Cambridge, UK

    Google Scholar 

  73. Fischel LB, Theodorou DN (1995) Self-consistent field model of the polymer/diblock copolymer/polymer interface. J Chem Soc Faraday Trans 91:2381–2402

    Article  CAS  Google Scholar 

  74. Werner A, Schmid F, Binder K, Muller M (1996) Diblock copolymers at a homopolymer-homopolymer interface: a Monte Carlo simulation. Macromolecules 29:8241–8248

    Article  CAS  Google Scholar 

  75. Leibler L (1988) Emulsifying effects of block copolymers in incompatible polymer blends. Makromol Chem Macromol Symp 16:1–17

    CAS  Google Scholar 

  76. Leibler L (1991) Block copolymers at interfaces. Physica A 172:258–268

    Article  CAS  Google Scholar 

  77. Shull KR, Kramer EJ (1990) Mean-field theory of polymer interfaces in the presence of block copolymers. Macromolecules 23:4769–4779

    Article  CAS  Google Scholar 

  78. Israels R, Jasnow D, Balazs AC, Guo L, Krausch G, Sokolov J, Rafailovich M (1995) Compatibilizing A/B blends with AB diblock copolymers: effect of copolymer molecular weight. J Chem Phys 102:8149–8157

    Article  CAS  Google Scholar 

  79. Kim SH, Jo WHA (1999) Monte Carlo simulation of polymer/polymer interface in the presence of block copolymer. I. Effects of the chain length of block copolymer and interaction energy. J Chem Phys 110:12193–12201

    Article  CAS  Google Scholar 

  80. Gersappe D, Harm PK, Irvine D, Balazs AC (1994) Contrasting the compatibilizing activity of comb and linear copolymers. Macromolecules 27:720–724

    Article  CAS  Google Scholar 

  81. Gersappe D, Balazs AC (1995) Random copolymers as effective compatibilizing agents. Phys Rev E 52:5061–5064

    Article  CAS  Google Scholar 

  82. Israels R, Foster DP, Balazs AC (1995) Designing optimal comb compatibilizers: AC and BC combs at an A/B interface. Macromolecules 28:218–224

    Article  CAS  Google Scholar 

  83. Lyatskaya J, Jacobson SH, Balazs AC (1996) Effect of composition on the compatibilizing activity of comb copolymers. Macromolecules 29:1059–1061

    Article  CAS  Google Scholar 

  84. Lyatskaya J, Balazs AC (1996) Using copolymer mixtures to compatibilize immiscible homopolymer blends. Macromolecules 29:7581–7587

    Article  CAS  Google Scholar 

  85. Lyatskaya J, Balazs AC, Gersappe D (1995) Effect of copolymer architecture on the efficiency of compatibilizers. Macromolecules 28:6278–6283

    Article  CAS  Google Scholar 

  86. Lyatskaya J, Gersappe D, Gross NA, Balazs AC (1996) Designing compatibilizers to reduce interfacial tension in polymer blends. J Phys Chem 100:1449–1458

    Article  CAS  Google Scholar 

  87. Russell TP, Mayes AM, Deline VR, Chung TC (1992) Hairpin configurations of triblock copolymers at homopolymer interfaces. Macromolecules 25:5783–5789

    Article  CAS  Google Scholar 

  88. Brown HR, Krappe U, Stadler R (1996) Effect of ABC triblock copolymers with an elastomeric midblock on the adhesion between immiscible polymers. Macromolecules 29:6582–6588

    Article  CAS  Google Scholar 

  89. Guo HF, Packirisamy S, Mani RS, Aronson CL, Cvozdic NV, Meier DJ (1998) Compatibilizing effects of block copolymers in low-density polyethylene/polystyrene blends. Polymer 39:2495–2505

    Article  CAS  Google Scholar 

  90. Cigana P, Favis BD (1998) The relative efficacy of diblock and triblock copolymers for a polystyrene/ethylene–propylene rubber interface. Polymer 39:3373–3378

    Article  CAS  Google Scholar 

  91. Dai C-H, Dair BJ, Dai KH, Ober CK, Kramer EJ (1994) Reinforcement of polymer interfaces with random copolymers. Phys Rev Lett 73:2472–2475

    Article  CAS  Google Scholar 

  92. Kulasekere R, Kaiser H, Ankner JF, Russell TP, Brown HR, Hawker CJ, Mayes AM (1996) Homopolymer interfaces reinforced with random copolymers. Macromolecules 29:5493–5496

    Article  CAS  Google Scholar 

  93. Smith GD, Russell TP, Kulasekere R, Ankner JF, Kaiser H (1996) A Monte Carlo simulation of asymmetric random copolymers at an immiscible interface. Macromolecules 29:4120–4124

    Article  CAS  Google Scholar 

  94. Benkoski JJ, Fredrickson GH, Kramer EJ (2001) Effects of composition drift on the effectiveness of random copolymer reinforcement at polymer–polymer interfaces. J Polym Sci Polym Phys 39:2363–2377

    Article  CAS  Google Scholar 

  95. Dadmun M (1996) Effect of copolymer architecture on the interfacial structure and miscibility of a ternary polymer blend containing a copolymer and two homopolymers. Macromolecules 29:3868–3874

    Article  CAS  Google Scholar 

  96. Eastwood EA, Dadmun MD (2002) Multiblock copolymers in the compatibilization of polystyrene and poly(methyl methacrylate) blends: role of polymer architecture. Macromolecules 35:5069–5077

    Article  CAS  Google Scholar 

  97. Tsitsilianis C, Voulgas D, Kosmas D (1998) Heteroarm star copolymers as emulsifying agents in polymer blends. Polymer 39:3571–3575

    Article  CAS  Google Scholar 

  98. Dadmun M (2000) Importance of a broad composition distribution in polymeric interfacial modifiers. Macromolecules 33:9122–9125

    Article  CAS  Google Scholar 

  99. Vilgis TA, Noolandi J (1988) On the compatibilization of polymer blends. Makromol Chem Macromol Symp 16:225–234

    CAS  Google Scholar 

  100. Vilgis TA, Noolandi J (1990) Theory of homopolymer–block copolymer blends. The search for a universal compatibilizer. Macromolecules 23:2941–2497

    Article  CAS  Google Scholar 

  101. Whitmore MD, Noolandi J (1985) Theory of micelle formation in block copolymer–homopolymer blends. Macromolecules 18:657–665

    Article  CAS  Google Scholar 

  102. Shull KR, Winey KI, Thomas EL, Kramer EJ (1991) Segregation of block copolymer micelles to surfaces and interfaces. Macromolecules 24:2748–2751

    Article  CAS  Google Scholar 

  103. Semenov AN (1992) Theory of diblock–copolymer segregation to the interface and free surface of a homopolymer layer. Macromolecules 25:4967–4977

    Article  CAS  Google Scholar 

  104. Adedeji A, Lyu S, Macosco CW (2001) Block copolymers in homopolymer blends: interface vs micelles. Macromolecules 34:8663–8668

    Article  CAS  Google Scholar 

  105. Chang K, Morse DC (2006) Diblock copolymer surfactants in immiscible homopolymer blends: swollen micelles and interfacial tension. Macromolecules 39:7746–7756

    Article  CAS  Google Scholar 

  106. Konig C, van Duin M, Pagnoulle C, Jérôme R (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757

    Article  Google Scholar 

  107. Nakayama A, Inoue T, Guegan P, Macosko, CW (1993) Compatibilizers for melt blending: premade vs. reactively formed block copolymers. Polym Prepr 34:840–841

    CAS  Google Scholar 

  108. Jeon HK, Zhang J, Macosco CW (2005) Premade vs. reactively formed compatibilizers for PMMA/PS melt blends. Polymer 46:12422–12429

    Article  CAS  Google Scholar 

  109. Orr CA, Adedeji A, Hirao A, Bates FS, Macosco CW (1997) Flow-induced reactive self-assembly. Macromolecules 30:1243–1246

    Article  CAS  Google Scholar 

  110. Schulze JS, Cernohous JJ, Hirao A, Lodge TP, Macosco CW (2000) Reaction kinetics of end-functionalized chains at a polystyrene/poly(methyl methacrylate) interface. Macromolecules 33:1191–1198

    Article  CAS  Google Scholar 

  111. Schulze JS, Moon B, Lodge TP, Macosco CW (2001) Measuring copolymer formation from end-functionalized chains at a PS/PMMA interface using FRES and SEC. Macromolecules 34:200–205

    Article  CAS  Google Scholar 

  112. Lee Y, Char K (2001) Enhancement of interfacial adhesion between amorphous polyamide and polystyrene by in-situ copolymer formation at the interface. Macromolecules 27:2603–2606

    Article  Google Scholar 

  113. Pagnoulle C, Konig C, Leemans L, Jérôme R (2000) Reactive compatibilization of SAN/EPR blends. 1. Dependence of the phase morphology development on the reaction kinetics. Macromolecules 33:6275–6283

    Article  CAS  Google Scholar 

  114. Pagnoulle C, Jérôme R (2001) Reactive compatibilization of SAN/EPR blends. 2. Effect of type and content of reactive groups randomly attached to SAN. Macromolecules 34:965–975

    Article  CAS  Google Scholar 

  115. Yin Z, Koolic C, Pagnoulle C, Jérôme R (2001) Reactive blending of functional PS and PMMA: interfacial behavior of in situ formed graft copolymers. Macromolecules 34:5132–5139

    Article  CAS  Google Scholar 

  116. Kim HY, Ryu DY, Jeong U, Kim DH, Kim JK (2005) The effect of chain architecture of in-situ formed copolymers on interfacial morphology of reactive polymer blends. Macromol Rapid Commun 26:1428–1433

    Article  CAS  Google Scholar 

  117. Chi C, Hu YT, Lips A (2007) Kinetics of interfacial reaction between two polymers studied by interfacial tension measurements. Macromolecules 40:6665–6668

    Article  CAS  Google Scholar 

  118. Padday JF (1969) In: Matijevic E (ed) Surface and colloid science, vol 1. Wiley, New York, p 111

    Google Scholar 

  119. Frisch HL, Gaines GL Jr, Schonhorn H (1976) In: Hannay NB (ed) Treatise on solid state chemistry, vol 6B. Plenum, New York, p 343

    Google Scholar 

  120. Wu S (1974) Interfacial and surface tensions of polymers. J Macromol Sci Rev Macromol Chem C10:1–73

    Google Scholar 

  121. Koberstein JT (1987) In: Mark HF, Bikales NM, Overberger CG, Menges G (eds) Encyclopedia of polymer science and engineering, vol 8, 2nd edn. Wiley, New York, p 237

    Google Scholar 

  122. Anastasiadis SH (1988) Interfacial tension of immiscible polymer blends. Ph.D. dissertation, Princeton University

    Google Scholar 

  123. Xing P, Bousmina M, Rodrigue D, Kamal MR (2000) Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6. Macromolecules 33:8020–8034

    Article  CAS  Google Scholar 

  124. Demarquette NR (2003) Evaluation of experimental techniques for determining interfacial tension between molten polymers. Int Mater Rev 48:247–269

    Article  CAS  Google Scholar 

  125. Roe R-J, Bacchetta VL, Wong PMG (1967) Refinement of pendent drop method for the measurement of surface tension of viscous liquid. J Phys Chem 71:4190–4193

    Article  CAS  Google Scholar 

  126. Roe R-J (1968) Surface tension of polymer liquids. J Phys Chem 72:2013–2017

    Article  CAS  Google Scholar 

  127. Wu S (1969) Surface and interfacial tensions of polymer melts: I. Polyethylene, polyisobutylene, and polyvinyl acetate. J Colloid Interface Sci 31:153–161

    Article  CAS  Google Scholar 

  128. Sakai T (1965) Surface tension of polyethylene melt. Polymer 6:659–661

    Article  Google Scholar 

  129. Hata T (1968) Hyomen (Surface, Japan) 6:281

    Google Scholar 

  130. Vonnegut B (1942) Rotating bubble method for the determination of surface and interfacial tensions. Rev Sci Instrum 13:6–9

    Article  CAS  Google Scholar 

  131. Princen HM, Zia IYZ, Mason SG (1967) Measurement of interfacial tension from the shape of a rotating drop. J Colloid Interface Sci 23:99–107

    Article  CAS  Google Scholar 

  132. Schonhorn H, Ryan FW, Sharpe LH (1966) Surface tension of a molten polychlorotrifluoroethylene. J Polym Sci A-2 4:538–542

    Article  CAS  Google Scholar 

  133. Edwards H (1968) Surface tensions of liquid polyisobutylenes. J Appl Polym Sci 12:2213

    Article  CAS  Google Scholar 

  134. Wilhelmy L Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Ann Phys 195:177–217

    Google Scholar 

  135. Dettre RH, Johnson RE Jr (1966) Surface properties of polymers: I. The surface tensions of some molten polyethylenes. J Colloid Interface Sci 21:367–377

    Article  Google Scholar 

  136. Du Noüy PL (1919) A new apparatus for measuring surface tension. J Gen Physiol 1:521–524

    Article  Google Scholar 

  137. Newman SB, Lee WL (1958) Surface tension measurements with a strain-gauge-type testing machine. Rev Sci Instrum 29:785–787

    Article  Google Scholar 

  138. Schonhorn H, Sharpe LH (1965) Surface energetics, adhesion, and adhesive joints. III. Surface tension of molten polyethylene. J Polym Sci A-2 3:569–573

    CAS  Google Scholar 

  139. Löfgren H, Neuman RD, Scriven LE, Davis HT (1984) Laser light-scattering measurements of interfacial tension using optical heterodyne mixing spectroscopy. J Colloid Interface Sci 98:175–183

    Google Scholar 

  140. Jon DI, Rosano HL, Cummins HZ (1986) Toluene/water/1-propanol interfacial tension measurements by means of pendant drop, spinning drop, and laser light-scattering methods. J Colloid Interface Sci 114:330–341

    Article  CAS  Google Scholar 

  141. Sauer BB, Yu H, Tien CF, Hager DF (1987) A surface light scattering study of a poly(ethylene oxide)–polystyrene block copolymer at the air–water and heptane–water interfaces. Macromolecules 20:393–400

    Article  CAS  Google Scholar 

  142. Sauer BB, Skarlupka RJ, Sano M, Yu H (1987) Dynamic interfacial-tensions of polymer-solutions by an electrocapillary wave technique. Polym Prepr 28, 20–21

    CAS  Google Scholar 

  143. Ito K, Sauer BB, Skarlupka RJ, Sano M, Yu H (1990) Dynamic interfacial properties of poly(ethylene oxide) and polystyrene at toluene/water interface. Langmuir 6:1379–1384

    Article  CAS  Google Scholar 

  144. Tomotika S (1935) On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc R Soc Lond A 150:322–337

    Article  Google Scholar 

  145. Chappelar DC (1964) Interfacial tension between molten polymers. Polym Prepr 5:363–364

    Google Scholar 

  146. Tjahjadi M, Ottino JM, Stone HA (1994) Estimating interfacial tension via relaxation of drop shapes and filament breakup. AIChE J 40:385–394

    Article  CAS  Google Scholar 

  147. Machiels AGC, Van Dam J, Posthuma de Boer A, Norder B (1997) Stability of blends of thermotropic liquid crystalline polymers with thermoplastic polymers. Polym Eng Sci 37:1512–1513

    Article  CAS  Google Scholar 

  148. Palmer G, Demarquette NR (2003) New procedure to increase the accuracy of interfacial tension measurements obtained by breaking thread method. Polymer 44:3045–3052

    Article  CAS  Google Scholar 

  149. Carriere CJ, Cohen A, Arends CB (1989) Estimation of interfacial tension using shape evolution of short fibers. J Rheol 33:681–689

    Article  CAS  Google Scholar 

  150. Cohen A, Carriere CJ (1989) Analysis of a retraction mechanism for imbedded polymeric fibers. Rheol Acta 28:223–232

    Article  CAS  Google Scholar 

  151. Carriere CJ, Cohen A (1991) Evaluation of the interfacial tension between high molecular weight polycarbonate and PMMA resins with the imbedded fiber retraction technique. J Rheol 35:205–212

    Article  CAS  Google Scholar 

  152. Wu S (1970) Surface and interfacial tensions of polymer melts. II. Poly(methyl methacrylate), poly(n-butyl methacrylate), and polystyrene. J Phys Chem 74:632–638

    Article  CAS  Google Scholar 

  153. Wu S (1971) Calculation of interfacial tension in polymer systems. J Polym Sci C 34:19–30

    Google Scholar 

  154. Roe R-J (1969) Interfacial tension between polymer liquids. J Colloid Interface Sci 31:228–235

    Article  CAS  Google Scholar 

  155. Anastasiadis SH, Chen JK, Koberstein JT, Siegel AF, Sohn JE, Emerson JA (1987) The determination of interfacial tension by video image processing of pendant fluid drops. J Colloid Interface Sci 119:55–66

    Article  CAS  Google Scholar 

  156. Bashforth S, Adams JC (1882) An attempt to test the theory of capillary action. Cambridge University Press and Deighton, Bell, London

    Google Scholar 

  157. Andreas JM, Hauser EA, Tucker WB (1938) J Phys Chem 42:1001–1019

    Article  CAS  Google Scholar 

  158. Fordham S (1948) On the calculation of surface tension from measurements of pendant drops. Proc R Soc Lond A 194:1–16

    Article  CAS  Google Scholar 

  159. Stauffer CE (1965) The measurement of surface tension by the pendant drop technique. J Phys Chem 69:1933–1938

    Article  CAS  Google Scholar 

  160. Huh C, Reed RL (1983) A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J Colloid Interface Sci 91:472–484

    Article  CAS  Google Scholar 

  161. Boyce JF, Schürch S, Rotenberg Y, Newmann AW (1984) The measurement of surface and interfacial tension by the axisymmetric drop technique. Colloids Surf 9:307–317

    Article  CAS  Google Scholar 

  162. Girault HH, Schiffrin DJ, Smith BDV (1982) Drop image processing for surface and interfacial tension measurements. J Electroanal Chem 137:207–217

    Article  CAS  Google Scholar 

  163. Girault HH, Schiffrin DJ, Smith BDV (1984) The measurement of interfacial tension of pendant drops using a video image profile digitizer. J Colloid Interface Sci 101:257–266

    Article  CAS  Google Scholar 

  164. Demarquette NR, Kamal MR (1994) Interfacial tension in polymer melts. I: An improved pendant drop apparatus. Polym Eng Sci 34:1823–1833

    Article  CAS  Google Scholar 

  165. Rotenberg Y, Boruvka L, Newmann AW (1983) Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci 93:169–183

    Article  CAS  Google Scholar 

  166. Siegel AF (1982) Robust regression using repeated medians. Biometrika 69:242–244

    Article  Google Scholar 

  167. Olshan AF, Siegel AF, Swindler DR (1982) Robust and least-squares orthogonal mapping: methods for the study of cephalofacial form and growth. Am J Phys Anthropol 59:131–137

    Article  CAS  Google Scholar 

  168. Siegel AF, Benson RH (1982) A robust comparison of biological shapes. Biometrics 38:341–350

    Article  CAS  Google Scholar 

  169. Bhatia QS, Chen JK, Koberstein JT, Sohn JE, Emerson JA (1985) The measurement of polymer surface tension by drop image processing: application to PDMS and comparison with theory. J Colloid Interface Sci 106:353–359

    Article  CAS  Google Scholar 

  170. Bhatia QS, Pan DH, Koberstein JT (1988) Preferential surface adsorption in miscible blends of polystyrene and poly(vinyl methyl ether). Macromolecules 21:2166–2175

    Article  CAS  Google Scholar 

  171. Jalbert C, Koberstein JT, Yilgor I, Gallagher P, Krukonis V (1993). Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane). Macromolecules 26:3069–3074

    Article  CAS  Google Scholar 

  172. Fleischer CA, Morales AR, Koberstein JT (1994) Interfacial modification through end group complexation in polymer blends. Macromolecules 27:379–385

    Article  CAS  Google Scholar 

  173. Anastasiadis SH, Hatzikiriakos SG (1998) The work of adhesion of polymer/wall interfaces and its association with the onset of wall slip. J Rheol 42:795–812

    Article  CAS  Google Scholar 

  174. Gaines GL Jr (1972) Surface and interfacial tension of polymer liquids – a review. Polym Eng Sci 12:1–11

    Article  CAS  Google Scholar 

  175. Hata Y, Kasemura T (1979) In: Lee L-H (ed) Polymer engineering and technology, vol 12A. Plenum, New York

    Google Scholar 

  176. Wu S (1978) Interfacial energy, structure, and adhesion between polymers. In: Paul DR, Newman S (eds) Polymer blends, vol 1. Academic, New York, p 244

    Google Scholar 

  177. Bailey AI, Salem BK, Walsh DJ, Zeytountsian A (1979) The interfacial tension of poly(ethylene oxide) and poly(propylene oxide) oligomers. Colloid Polym Sci 257:948–952

    Article  CAS  Google Scholar 

  178. LeGrand DG, Gaines GL Jr (1975) Immiscibility and interfacial tension between polymer liquids: dependence on molecular weight. J Colloid Interface Sci 50:272–279

    Article  CAS  Google Scholar 

  179. Gaines GL Jr, Gaines GL III (1978) The interfacial tension between n-alkanes and poly(ethylene glycols). J Colloid Interface Sci 63:394–398

    Article  CAS  Google Scholar 

  180. Girifalco LA, Good RJ (1957) A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J Phys Chem 61:904–909

    Article  CAS  Google Scholar 

  181. Sanchez IC (1983) Bulk and interface thermodynamics of polymer alloys. Ann Rev Mater Sci 13:387–412

    Article  CAS  Google Scholar 

  182. LeGrand DG, Gaines GL Jr (1971) Surface tension of mixtures of oligomers. J Polym Sci C 34:45–51

    Google Scholar 

  183. Gibbs JW (1928) Collected works, vol 1, 2nd edn. Longmans, New York

    Google Scholar 

  184. Sancez IC (1984) On the nature of polymer interfaces and interphases. Polym Eng Sci 24:79–86

    Article  Google Scholar 

  185. Cahn JW (1978) In: Blakely JJ, Johnson WC (eds) Segregation to interfaces. ASM seminar series. Cleveland, OH

    Google Scholar 

  186. Antonow G (1907) Surface tension at the limit of two layers. J Chim Phys 5:372–385

    CAS  Google Scholar 

  187. Antonoff G (1942) On the validity of Antonoff’s rule. J Phys Chem 46:497–499

    Article  CAS  Google Scholar 

  188. Antonoff G, Chanin M, Hecht M (1942) Equilibria in partially miscible liquids. J Phys Chem 46:492–496

    Article  CAS  Google Scholar 

  189. Good RJ, Girifalco LA, Kraus G (1958) A theory for estimation of interfacial energies. II. Application to surface thermodynamics of teflon and graphite. J Phys Chem 62:1418–1421

    Article  CAS  Google Scholar 

  190. Good RJ, Girifalco LA (1960) A theory for estimation of interfacial energies. III. Estimation of surface energies of solids from contact angle data. J Phys Chem 64:561–565

    Article  CAS  Google Scholar 

  191. Good RJ (1964) In: Fowkes FM (ed) Contact angle, wettability and adhesion. Advances in chemistry series, No. 43. American Chemical Society, Washington, DC, p 74

    Chapter  Google Scholar 

  192. Good RJ, Elbing E (1970) Generalization of theory for estimation of interfacial energies. Ind Eng Chem 62:54–59

    Article  CAS  Google Scholar 

  193. Wu S (1969) Surface and interfacial tensions of polymer melts: I. Polyethylene, polyisobutylene, and polyvinyl acetate. J Colloid Interface Sci 31:153–161

    Article  CAS  Google Scholar 

  194. Wu S (1970) Surface and interfacial tensions of polymer melts. II. Poly(methyl methacrylate), poly(n-butyl methacrylate), and polystyrene. J Phys Chem 74:632–638

    Article  CAS  Google Scholar 

  195. Wu S (1973) Polar and nonpolar interactions in adhesion. J Adhes 5:39–55

    Article  CAS  Google Scholar 

  196. Fowkes FM (1964) In: Fowkes FM (ed) Contact angle, wettability and adhesion. Advances in chemistry series, No. 43. American Chemical Society, Washington, DC, p 99

    Chapter  Google Scholar 

  197. LeGrand DG, Gaines GL Jr (1969) The molecular weight dependence of polymer surface tension. J Colloid Interface Sci 31:162–167

    Article  CAS  Google Scholar 

  198. LeGrand DG, Gaines GL Jr (1973) Surface tension of homologous series of liquids J Colloid Interface Sci 42:181–184

    Article  CAS  Google Scholar 

  199. Helfand E (1975) Theory of inhomogeneous polymers: fundamentals of the Gaussian random-walk model. J Chem Phys 62:999–1005

    Article  CAS  Google Scholar 

  200. Tagami Y (1980) Effect of compressibility upon polymer interface properties. Ferroelectrics 30:115–116

    CAS  Google Scholar 

  201. Tagami Y (1980) Effect of compressibility upon polymer interface properties. J Chem Phys 73:5354–5362

    Article  CAS  Google Scholar 

  202. Helfand E (1974) Theory of inhomogeneous polymers – lattice model of concentrated solution surfaces. Polym Prepr 15:246–247

    Google Scholar 

  203. Helfand E (1975) Theory of inhomogeneous polymers: lattice model for polymer–polymer interfaces. J Chem Phys 63:2192–2198

    Article  CAS  Google Scholar 

  204. Helfand E (1976) Theory of inhomogeneous polymers. Lattice model for solution interfaces. Macromolecules 9:307–310

    Article  CAS  Google Scholar 

  205. Weber TA, Helfand E (1976) Theory of inhomogeneous polymers. Solutions for the interfaces of the lattice model. Macromolecules 9:311–316

    Article  CAS  Google Scholar 

  206. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  207. Roe R-J (1975) Theory of the interface between polymers or polymer solutions. I. Two components system. J Chem Phys 62:490–499

    Article  CAS  Google Scholar 

  208. Helfand E (1982) Polymer interfaces. In: Solc K (ed) Polymer compatibility and incompatibility: principles and practice. MMI symposium series, vol 2. Michigan Molecular Institute Press, Harwood Academic, New York, p 143

    Google Scholar 

  209. Kammer H-W (1977) Surface and interfacial tension of polymer melts – thermodynamic theory of interface between immiscible polymers. Z Phys Chem (Leipzig) 258:1149–1161

    CAS  Google Scholar 

  210. Guggenheim EA (1940) The thermodynamics of interfaces in systems of several components. Trans Faraday Soc 35:397–412

    Article  Google Scholar 

  211. Hong KM, Noolandi J (1981) Theory of inhomogeneous multicomponent polymer systems. Macromolecules 14:727–736

    Article  CAS  Google Scholar 

  212. Edwards SF (1965) The statistical mechanics of polymers with excluded volume. Proc Phys Soc Lond 85:613–624

    Article  CAS  Google Scholar 

  213. Freed KF (1972) Functional integrals and polymer statistics. Adv Chem Phys 22:1–128

    Article  CAS  Google Scholar 

  214. Hong KM, Noolandi J (1981) Theory of interfacial tension in ternary homopolymer-solvent systems. Macromolecules 14:736–742

    Article  CAS  Google Scholar 

  215. Gaillard P, Ossenbach-Sauter M, Riess G (1982) Polymeric two-phase systems in the presence of block copolymers. In: Solc K (ed) Polymer compatibility and incompatibility: principles and practice. MMI symposium series. Michigan Molecular Institute Press, Harwood Academic, New York, p 289

    Google Scholar 

  216. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267

    Article  CAS  Google Scholar 

  217. van der Waals JD (1893) Verh. Konink. Akad. Weten. Amsterdam 1, 8 [translated in English in Rowlinson, J. S. Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”. J Stat Phys 1979, 20, 197–200]

    Google Scholar 

  218. van der Waals JD, Kohnstamm Ph (1908) Lehrbuch der Thermodynamik, vol I. Mass and van Suchtelen, Leipzig

    Google Scholar 

  219. Lord Rayleigh (1892) On the theory of surface forces. II. Compressible fluids. Philos Mag 33:209–220

    Google Scholar 

  220. Yang AJM, Fleming PD III, Gibbs JH (1976) Molecular theory of surface tension. J Chem Phys 64:3732–3747

    Article  CAS  Google Scholar 

  221. Fleming PD III, Yang AJM, Gibbs JH (1976) A molecular theory of interfacial phenomena in multicomponent systems. J Chem Phys 65:7–17

    Article  CAS  Google Scholar 

  222. Adolf D, Tirrell M, Davis HT (1985) Molecular theory of transport in fluid microstructures: diffusion in interfaces and thin films. AlChE J 31:1178–1186

    CAS  Google Scholar 

  223. Bongiorno V, Davis HT (1975) Modified Van der Waals theory of fluid interfaces. Phys Rev A 12:2213–2224

    Article  CAS  Google Scholar 

  224. Carey BS, Scriven LE, Davis HT (1978) On gradient theories of fluid interfacial stress and structure. J Chem Phys 69:5040–5049

    Article  CAS  Google Scholar 

  225. Margenau H, Murphy GM (1943) The mathematics of physics and chemistry. D. Van Nostrand, Princeton, NJ

    Google Scholar 

  226. Poser CI, Sanchez IC (1979) Surface tension theory of pure liquids and polymer melts. J Colloid Interface Sci 69:539–548

    Article  CAS  Google Scholar 

  227. Sanchez IC (1983) Liquids: surface tension, compressibility, and invariants. J Chem Phys 79:405–415

    Article  CAS  Google Scholar 

  228. Halperin A, Pincus P (1986) Polymers at a liquid–liquid interface. Macromolecules 19:79–84

    Article  CAS  Google Scholar 

  229. Poser CI, Sachez IC (1981) Interfacial tension theory of low and high molecular weight liquid mixtures. Macromolecules 14:361–370

    Article  CAS  Google Scholar 

  230. Vrij A (1968) Equation for the interfacial tension between demixed polymer solutions. J Polym Sci A-2 6:1919–1932

    Article  CAS  Google Scholar 

  231. de Gennes P-G (1980) Dynamics of fluctuations and spinodal decomposition in polymer blends. J Chem Phys 72:4756–4763

    Article  CAS  Google Scholar 

  232. Ronca G, Russell TP (1985) Thermodynamics of phase separation in polymer mixtures. Macromolecules 18:665–670

    Article  CAS  Google Scholar 

  233. Pincus P (1981) Dynamics of fluctuations and spinodal decomposition in polymer blends. II. J Chem Phys 75:1996–2000

    Article  CAS  Google Scholar 

  234. Binder K (1983) Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures. J Chem Phys 79:6387–6409

    Article  CAS  Google Scholar 

  235. Schichtel TE, Binder K (1987) Kinetics of phase separation in polydisperse polymer mixtures. Macromolecules 20:1671–1681

    Article  CAS  Google Scholar 

  236. Debye P (1959) Angular dissymmetry of the critical opalescence in liquid mixtures. J Chem Phys 31:680–687

    Article  CAS  Google Scholar 

  237. Sanchez IC, Lacombe RH (1976) An elementary molecular theory of classical fluids. Pure fluids. J Phys Chem 80:2352–2362

    Article  CAS  Google Scholar 

  238. Lacombe RH, Sanchez IC (1976) Statistical thermodynamics of fluid mixtures. J Phys Chem 80:2568–2580

    Article  CAS  Google Scholar 

  239. Sanchez IC, Lacombe RH (1977) An elementary equation of state for polymer liquids. J Polym Sci Polym Lett 15:71–75

    Article  CAS  Google Scholar 

  240. Sanchez IC, Lacombe RH (1978) Statistical thermodynamics of polymer solutions. Macromolecules 11:1145–1156

    Article  CAS  Google Scholar 

  241. Joanny JF (1978) These 3érne Cycle. Université Paris 6

    Google Scholar 

  242. de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

    Google Scholar 

  243. Roe R-J (1986) SAXS study of micelle formation in mixtures of butadiene homopolymer and styrene-butadiene block copolymer. 3. Comparison with theory. Macromolecules 19:728–731

    Article  CAS  Google Scholar 

  244. Debye P (1947) Molecular-weight determination by light scattering. J Phys Colloid Chem 51:18–32

    Article  CAS  Google Scholar 

  245. Owens JN, Gancarz IS, Koberstein JT, Russell TP (1989) Investigation of the microphase separation transition in low-molecular-weight diblock copolymers. Macromolecules 22:3380–3387

    Article  CAS  Google Scholar 

  246. Joanny JF, Leibler L (1978) Interface in molten polymer mixtures near consolute point. J Phys (Paris) 39:951–953

    CAS  Google Scholar 

  247. Lifshitz IM (1968) Some problems of the statistical theory of biopolymers. Zh Eksp Teor Fiz 55:2408 [Sov Phys – JETP (1969) 28:1280–1286]

    Google Scholar 

  248. Flory PJ, Orwoll RA, Vrij A (1964) Statistical thermodynamics of chain molecule liquids. I. An equation of state for normal paraffin hydrocarbons. J Am Chem Soc 86:3507–3514

    Article  CAS  Google Scholar 

  249. Nose T (1976) Theory of liquid–liquid interface of polymer systems. Polym J 8:96–113

    Article  CAS  Google Scholar 

  250. de Gennes P-G (1977) Qualitative features of polymer demixtion. J Phys Lett 38:L441–L443

    Article  Google Scholar 

  251. Ouhadi T, Fayt R, Jérôme R, Teyssié Ph (1986) Molecular design of multicomponent polymer systems. 9. Emulsifying effect of poly(alpha-methylstyrene-b-methlyl methacrylate) in poly(vinylidene fluoride)/poly(alpha-methylstyrene) blends. Polym Commun 27:212–215

    CAS  Google Scholar 

  252. Ouhadi T, Fayt R, Jérôme R, Teyssié Ph (1986) Molecular design of multicomponent polymer systems. X. Emulsifying effect of poly(styrene-b-methyl methacrylate) in poly(vinylidene fluoride)/noryl blends. J Polym Sci Polym Phys 24:973–981

    Article  CAS  Google Scholar 

  253. Ouhadi T, Fayt R, Jérôme R, Teyssié Ph (1986) Molecular design of multicomponent polymer systems, XI, emulsifying effect of poly(hydrogenated diene-b-methyl methacrylate) in poly(vinylidene fluoride)/polyolefins blends. J Appl Polym Sci 32:5647–5651

    Article  CAS  Google Scholar 

  254. Ruegg ML, Reynolds BJ, Lin MY, Lohse DJ, Balsara NP (2007) Minimizing the conversion of diblock copolymer needed to organize blends of weakly segregated polymers by tuning attractive and repulsive interactions. Macromolecules 40:1207–1217

    Article  CAS  Google Scholar 

  255. Meier DJ (1969) Theory of block copolymers. I. Domain formation in A-B block copolymers. J Polym Sci C 26:81–98a

    Google Scholar 

  256. Mason JA, Sperling LH (1976) Polymer blends and composites. Plenum, New York

    Google Scholar 

  257. Riess G, Jolivet Y (1975) In: Platzer NAJ (ed) Copolymers, polyblends, and composites. Advances in chemistry series, vol 142. American Chemical Society, Washington, DC, p 243

    Chapter  Google Scholar 

  258. Riess G, Kohler J, Tournut C, Banderet A (1967) Über die vertrðglichkeit von copolymeren mit den entsprechenden homopolymeren. Makromol Chem 101:58–73

    Article  CAS  Google Scholar 

  259. Fayt R, Jérôme R, Teyssié Ph (1986) Characterization and control of interfaces in emulsified incompatible polymer blends. In: Utracki LA (ed) Polyblends-’86, NRCC/IMRI polymers symposium series. NRCC/IMRI, Montreal, p 1

    Google Scholar 

  260. Ouhadi T, Fayt R, Jérôme R, Teyssié Ph (1987) Characterization and control of interfaces in emulsified incompatible polymer blends. Polym Eng Sci 27:328–334

    Article  Google Scholar 

  261. Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1990) The morphology of symmetric diblock copolymers as revealed by neutron reflectivity. J Chem Phys 92:5677–5691

    Article  CAS  Google Scholar 

  262. Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1989) Neutron reflectivity studies of thin diblock copolymer films. Phys Rev Lett 62:1852–1855

    Article  CAS  Google Scholar 

  263. Russell TP, Menelle A, Hamilton WA, Smith GS, Satija SK, Majkrzak CF (1991) Width of homopolymer interfaces in the presence of symmetric diblock copolymers. Macromolecules 24:5721–5726

    Article  CAS  Google Scholar 

  264. Patterson HT, Hu KH, Grindstaff TH (1971) Measurement of interfacial and surface tensions in polymer systems. J Polym Sci C 34:31–43

    Google Scholar 

  265. Wilson DJ, Hurtrez G, Riess G (1985) Colloidal behavior and surface activity of block copolymers. In: Walsh DJ, Higgins JS, Maconnachie A (eds) Polymer blends and mixtures. NATO Advanced Science Institute Series. Mortinus Nijhoff, Dordrecht, The Netherlands, p 195

    Google Scholar 

  266. Gaillard P, Ossenbach-Sauter M, Riess G (1980) Tensions interfaciales de systèmes polymères biphasiques en présence de copolymères séquencés. Makromol Chem Rapid Commun 1:771–774

    Article  CAS  Google Scholar 

  267. Noolandi J (1987) Interfacial properties of block copolymers in immiscible homopolymer blends. Polym Prepr 28:46–47

    CAS  Google Scholar 

  268. Pavlopoulou E, Anastasiadis SH, Iatrou H, Moshakou M, Hadjichristidis N, Portale G, Bras W (2009) The micellization of miktoarm star SnIn copolymers in block copolymer/homopolymer blends. Macromolecules 42:5285–5295

    Article  CAS  Google Scholar 

  269. Gia HB, Jérôme R, Teyssié Ph (1980) Star-shaped block copolymers. III. Surface and interfacial properties. J Polym Sci Polym Phys 18:2391–2400

    Google Scholar 

  270. Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York–

    Google Scholar 

  271. Piirma I (1992) Polymeric surfactants. Marcel Dekker, New York

    Google Scholar 

  272. Nakamura K, Endo R, Takada M (1976) Surface properties of styrene–ethylene oxide block copolymers. J Polym Sci Polym Phys 14:1287–1295

    CAS  Google Scholar 

  273. Owen MJ, Kendrick TC (1970) Surface activity of polystyrene–polysiloxane–polystyrene ABA block copolymers. Macromolecules 3:458–461

    Article  CAS  Google Scholar 

  274. Munch MR, Gast AP (1988) Block copolymers at interfaces. 2. Surface adsorption. Macromolecules 21:1366–1372

    Article  CAS  Google Scholar 

  275. Helfrich W (1973) Elastic properties of lipid bilayers – theory and possible experiments. Z Naturforsch C 28:693–703

    CAS  Google Scholar 

  276. Stammer A, Wolf BA (1998) Effect of random copolymer additives on the interfacial tension between incompatible polymers. Macromol Rapid Commun 19:123–126

    Article  CAS  Google Scholar 

  277. Budkowski A, Losch A, Klein J (1995) Diffusion-limited segregation of diblock copolymers to a homopolymer surface. Israel J Chem 35:55–64

    CAS  Google Scholar 

  278. Semenov AN (1992) Theory of diblock–copolymer segregation to the interface and free surface of a homopolymer layer. Macromolecules 25:4967–4977

    Article  CAS  Google Scholar 

  279. Morse DC (2007) Diffusion of copolymer surfactant to a polymer/polymer interface. Macromolecules 40:3831–3839

    Article  CAS  Google Scholar 

  280. Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A 146:501–523

    Article  CAS  Google Scholar 

  281. Noolandi J (1984) Recent advances in the theory of polymeric alloys. Polym Eng Sci 24:70–78

    Article  CAS  Google Scholar 

  282. Leibler L (1982) Theory of phase equilibria in mixtures of copolymers and homopolymers. 2. Interfaces near the consolute point. Macromolecules 15:1283–1290

    Article  CAS  Google Scholar 

  283. Noolandi J, Hong KM (1980) Theory of inhomogeneous polymers in presence of solvent. Ferroelectrics 30:117–123

    CAS  Google Scholar 

  284. Selb J, Marie P, Rameau A, Duplessix R, Gallot Y (1983) Study of the structure of block copolymer–homopolymer blends using small angle neutron scattering. Polym Bull 10:444–451

    Article  CAS  Google Scholar 

  285. Retsos H, Terzis AF, Anastasiadis SH, Anastassopoulos DL, Toprakcioglu C, Theodorou DN, Smith GS, Menelle A, Gill RE, Hadziioannou G, Gallot Y (2001) Mushrooms and brushes in thin films of diblock copolymer/homopolymer mixtures. Macromolecules 35:1116–1132

    Article  CAS  Google Scholar 

  286. Shull KR (1993) Interfacial phase transitions in block copolymer/homopolymer blends. Macromolecules 26:2346–2360

    Article  CAS  Google Scholar 

  287. de Gennes P-G (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075

    Article  CAS  Google Scholar 

  288. Noolandi J (1991) Interfacial tension in incompatible homopolymer blends with added block copolymer. Die Makromol Chem Rapid Commun 12:517–521

    Article  CAS  Google Scholar 

  289. Munch MR, Gast AP (1988) Block copolymers at interfaces. 1. Micelle formation. Macromolecules 21:1360–1366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge H. Retsos for his help in the preparation of the present article. He would also like to thank I. Gancarz, N. Hadjichristidis, H. Watanabe, K. Adachi, J. W. Mays, M. Pitsikalis, S. Pispas, H. Iatrou, and K. Hong for synthesizing and kindly supplying the diblock copolymers and some of the homopolymers used in the previous works by the author on polymer–polymer interfacial tension. J. T. Koberstein is acknowledged for introducing the author to the area of polymer interfaces, as are T. P. Russell, S. K. Satija, C. F. Majkrzak, and G. Felcher with whom the author studied the structure of polymer interfaces. This research was sponsored by NATO’s Scientific Affairs Division in the framework of the Science for Peace Programmes (projects SfP-974173 and SfP-981438), by the Greek General Secretariat of Research and Technology in the framework of the ΠENEΔ Programme (projects 01EΔ587 and 03EΔ581), and by the European Union (projects G5RD-CT-2002-00834, NMP3-CT-2005-506621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros H. Anastasiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anastasiadis, S.H. (2010). Interfacial Tension in Binary Polymer Blends and the Effects of Copolymers as Emulsifying Agents. In: Wolf, B., Enders, S. (eds) Polymer Thermodynamics. Advances in Polymer Science, vol 238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_81

Download citation

Publish with us

Policies and ethics