
Web Browsers as Service-Oriented Clients Integrated
with Web Services

Hisashi Miyashita and Tatsuya Ishihara

IBM Research, Tokyo Research Laboratory, Japan
{himi, tisihara}@jp.ibm.com

Abstract. Web browsers are becoming important application clients in SOAs
(Service-Oriented Architectures) because more and more Web applications are
built from multiple Web Services. Therefore incorporating Web Services into
Web browsers is of great interest. However, the existing Web Service frameworks
bring significant complexities to traditional Web applications based on DHTML
since such Web Service frameworks use RPC (Remote Procedure Call) or a
message-passing model while DHTML is based on a document-centric model.
Therefore Web application developers have to bridge the gaps between these two
models such as an Object/XML impedance mismatch.

In our novel approach, in order to request Web Services, the application pro-
grams manipulate documents with uniform document APIs without invoking
service-specific APIs and without mapping between objects and XML docu-
ments. The Web Service framework automatically updates the document by ex-
changing SOAP messages with the servers.

We show that in our new framework, WebDrasil, we can request a service with
only one XPath expression, and then get the response using DOM (Document
Object Model) APIs, an approach which is efficient and easily understood by
typical Web developers.

1 Introduction

Service-Oriented Architecture (SOA) is an important technology to coordinate services
across over multiple divisions in enterprise systems. These days, SOA on the client
side is receiving attention for delivering services to end users [1], and many client
frameworks are now supporting SOAs. For example, the Flex Framework by Adobe,
the Eclipse based Rich Client Platform contributed by IBM, and the Mozilla Web
browser [2] now support Web Services for SOA. Such a client having a close affin-
ity to SOA is called an SOC (Service-Oriented Client) [1].

Of these clients, the Web browser is the most important platform for SOC. Recently,
many websites or Web applications are combined using mash-up technology [3]. For ex-
ample, HousingMaps (http://www.housingmaps.com) combines craigslist and
Google maps and provides a totally new service to search for properties. This shift was
triggered by the breakthrough technology, Ajax [4], which supports asynchronous ac-
cess to distributed Web Services. Ajax allows a Web browser to be an intelligent client
for Web Services by greatly improving the user experience. For example, Google pro-
vides Map and Calendar, and is now preparing a spreadsheet service by using Ajax.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 289–301, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

290 H. Miyashita and T. Ishihara

In line with the importance of Web browsers in service computing, supporting Web
Services on Web browsers is becoming vital for SOA.

However, the existing Web Service frameworks such as JAX-WS (formerly JAX-
RPC) [5] and Mozilla Web Service [2] do not fit with the programming model of Web
browsers. These frameworks are designed not for Web browsers to present data for
Web Services, but for native languages (JavaScript and Java) to easily access SOAP
messages. Therefore, such frameworks are built on top of RPC (Remote Procedure
Call) or a message-passing model. In contrast, Web browsers use a document-centric
model. For example, in DHTML (Dynamic HTML) applications on Web browsers,
scripts in the documents manipulate the in-memory tree structure, the DOM (Document
Object Model), to change the presentation. Since SOAP messages are now widely used
as document-literal instead of RPC/encoded 1, they are viewed as XML documents,
not as objects in Object-Oriented (OO) Programming. Therefore, introducing existing
Web Services frameworks (from the OO world) into Web browsers (the XML world)
doubles the gaps between these two models (as shown in Fig.1).

Object/XML
impedance
mismatch

Fig. 1. The gaps by Web Services frameworks on Web browsers Fig. 2. Our approach

1.1 The Gaps in the Web Services Frameworks

Let us consider examples to clarify the gaps in a framework. In Fig. 3, we show a
JavaScript code fragment that sends a request to Amazon.com Search Web Service
on Mozilla using an RPC model. In this example, we construct an searchRequest
object and then call the KeywordSearchRequest API to request the service. In
contrast, to show the search results using DHTML, we write something like Fig. 4 using
a document model. This code converts the result object to an HTML document, and
inserts it into the DOM.

The gaps between the RPC and document models are twofold: 1) Non-uniform vs.
uniform APIs and 2) Object/XML impedance mismatch [7].

For 1), in the RPC model, we invoke a service-specific API,
KeywordSearchRequest. The names and arguments of such APIs differ from ser-
vice to service. By comparison, in the document model, we use the uniform APIs, namely
DOM APIs, to show the results. These same APIs can be used for services of any type.

1 WS-I profile [6] does not support RPC/encoded for interoperability.

Web Browsers as Service-Oriented Clients Integrated with Web Services 291

var searchRequest = new Object();
searchRequest.keyword=value;
searchRequest.page="1";
searchRequest.mode="books";
...
// proxy is Web Service Proxy object
proxy.KeywordSearchRequest(

searchRequest);

Fig. 3. Issue an Amazon search request
(an RPC model)

var e = document.getElementById(’resultid’);
for (i = 0; i < result.Details.length; i++){

e.innerHTML +="<p>"+
result.Details[i].ProductName+"</p>";

}

Fig. 4. Show the search results in DHTML (a
document model). The search results are stored
in the result variable.

For 2), when we create an object to invoke a service, we have to manually convert
the resulting object into a document written as HTML. To deal with this conversion,
the developers have to understand how such language-native objects are mapped from
SOAP messages. In other words, they have to know how the result.Details[i].
ProductName object is translated from the ProductName element in the SOAP
response that actually looks like:

... <ProductInfo>
<Details url="...">
<Asin>A00001O1XK</Asin>
<ProductName> SOA Handbook </ProductName> ...

</Details>
... </ProductInfo> ...

It is quite difficult for developers to understand how XML documents are mapped
to language-native objects and how such objects should be converted to XML docu-
ments for presentation. In this example, it is not clear why result.Details[0].
ProductName is correct, but result.ProductInfo.Details.
ProductName is not correct. That depends on the specification of the Web Service
framework.

As is shown by this example, in bridging the gaps between these two models, SOC
application developers have to comprehend both programming and data models, which
substantially increases development and maintenance costs for Web applications [7].

1.2 Document-Based Web Service Framework

We address the problems by introducing a new Web Service framework to integrate
the programming models. In our approach, we can request services by manipulating
documents (Fig. 2). For example, we can issue the same request to the Amazon.com
Web Service with an XPath expression:

var request = webService.selectSingleNode(
"./ws:Query[1]/ws:Request/aws:KeyWordSearchRequest\\
[keyword=’keyword’ and page=’1’ and mode=’books’ ...]",
namespaces);

Unlike existing Web Service stacks, our framework does not impose an object-XML
mapping on the client applications. Rather, the client applications concentrate on ma-
nipulating documents by using uniform interfaces such as DOM and XPath. Our client
framework translates such document manipulations into SOAP message exchanges, and

292 H. Miyashita and T. Ishihara

then caches the requests and responses in the DOM tree appropriately. Thus, we store
the results in XML documents, not in objects. This model is completely aligned with
DHTML, and free from the Object/XML impedance mismatch. Actually, we can even
directly present the responses from the XML by setting the styles with CSS without
any XML transformation. Of course, we can directly extract data from the response
with XPath. For example, we can access all the ProductName elements in the previ-
ous example by specifying something like:

var productNames = response.selectNodeList(
".//Details/ProductName", namespaces);

By unifying the programming models of Web Services and Web browsers, we can
achieve seamless integration between them. Developers can seamlessly deal with the
usual Web applications and Web Service clients rather than fighting with various APIs
introduced by individual Web Services.

In addition, in our approach we can efficiently integrate Web Service technology
with powerful and successful Web standards such as HTML, XSLT, CSS, and XForms.
Web Service solution providers can rely on the power of these technologies when they
design service-specific XML messages. With reduced effort, they can build stylish and
attractive clients by transforming the DOM tree with XSLT, defining styles with CSS,
and using XForms to create forms.

The rest of this paper is organized as follows. In Section 2, we introduce the archi-
tecture design principles of our novel Web Service client framework. In Section 3, we
present our Web Service client implementation named WebDrasil, and use some ex-
amples to show the efficiency of our client Web Service programming model. Finally,
Sections 4 and 5 provide related work and our conclusions, respectively.

2 Web Service Architecture Based on Web Browsers

We propose a novel framework for Web Services suitable for Web Browsers that re-
moves the gaps between DHTML applications and the existing SOAP stacks. Rather
than explicitly sending SOAP messages or invoking new interfaces (typically generated
from WSDL), we simply access a tree with a uniform API such as DOM. We show the
mechanism in Fig. 5:(1) First, we insert a request message into a tree; (2) Try to get
the result by accessing the location where the response message is to be inserted into
the tree; (3)–(5) The client framework automatically exchanges the required messages
with the server(s) and inserts the response into the tree; (6) Finally, we can access the
response.

Let us explain these steps by using an example. Suppose we want to retrieve the
cached page of http://www.ibm.com via the Google Web Service. In our frame-
work, as Step (1), we place the request shown in Fig. 6 into the DOM tree by using
the DOM or XPath APIs (the details are discussed in Section 2.1). In this example,
we insert the request under the ws:Query element, as shown in Fig. 7. In Step (2),
we access the DOM tree where the response message will be stored, that is, under the
ws:Response element, as shown in the left panel of Fig. 8. In Step (3), when the
client framework detects the changes in the DOM tree, the framework translates the
message under the ws:Request element into a SOAP message and then sends it to

Web Browsers as Service-Oriented Clients Integrated with Web Services 293

the appropriate endpoint by using the WSDL definition of the service. In Step (4), the
framework receives the SOAP response. In Step (5), the framework places the response
from the SOAP message into the DOM tree, as shown in the right panel of Fig. 8. In
Step (6), we find the required information in the return element, which should be the
cached page of http://www.ibm.com. Notice that Steps (3)–(5) are automatically
processed by the framework. Users can retrieve the result as though it already existed
in the tree with this mechanism.

Client

WebService
Server

DOM
User

Program
(1) Insert a request

message

(2) Try to access
 a response message

(4) Receive a SOAP
response(5) Insert the response

(6) Get the response

Client Framework

SOAP
message

SOAP
message

(3) Create and send a SOAP message

Fig. 5. The Mechanism of our Web Service Client Framework

<gws:doGetCachedPage xmlns:gws="urn:GoogleSearch">
<key xsi:type="xsd:string">0000</key>
<url xsi:type="xsd:string">http://www.google.com/</url>

</gws:doGetCachedPage>

Fig. 6. A request message of doGetCachedPage

In the rest of this section, we explain the details of our architecture. In the next
subsection, we explain how we specify requests from a Web Service. We continue by
discussing synchronous/lazy/asynchronous update modes and our cache mechanism.
Finally, we discuss response transformations that help user programs be independent of
the details of the Web Service interfaces.

2.1 Querying Services

In order to request a Web Service, we have to prepare a SOAP message from the request
data, which we call a query in our framework (Fig. 5 (1)). That is, instead of invoking a
method, we do a query to request a service.

We use the following steps to request a service: (a) create a SOAP body part for the
query; (b) construct a SOAP envelope from the service specification and make a SOAP
message by putting the body in the envelope; (c) select an endpoint for the service and
send the SOAP message to it.

294 H. Miyashita and T. Ishihara

ws:Query
ws:WebService

ws:WebService
ws:Query

ws:Request

gws:doGetCachedPage
key url

Fig. 7. The request message in the DOM.
The ws:WebService, ws:Query, and
ws:Request elements are introduced just
for bundling messages in the DOM, where
ws is a prefix of the reserved namespace for
Web Service.

ws:WebService
ws:Query

ws:Request

gws:doGetCachedPage

key url
ws:Response

ws:WebService
ws:Query

ws:Request

gws:doGetCachedPage
key url

ws:Response

gws:doGetCachedPageResponse

return

Fig. 8. From the ws:Response element, we ob-
tain the response message from the Web Service

Another approach is to use a string to specify a query. Considering the WWW ar-
chitecture, all resources are specified by a URI, which is just one string, which greatly
contributes to simplifying the interface of the WWW. If we can describe a request in
one string, our query model is also simplified as well.

For this purpose, we introduce an XPath query model. Instead of directly construct-
ing an XML message, we specify an XPath expression that can be interpreted as a
request message. Let us consider again the example shown in Fig. 6. In this example,
the essential information to request the service is that the key is 0000 and the URL is
http://www.google.com/. Therefore, we can specify these two in the following
XPath expression.

doGetCachedPage[key=’0000’ and url=’http://www.google.com/’]

By extracting the type information from the WSDL definition, we can construct the re-
quest message in Fig. 6 from the above expression. That is, “xsi:type” attributes are
automatically added by the WSDL definition.

More formally, this process requires translations from an XPath expression to an
XML tree, which involves some challenging issues. Later, we explain our sample im-
plementation in Subsection 3.2, and discuss the advanced topics in Section 5. Here,
suffice it to say that we can convert some XPath expressions into XML trees, as long as
they conform to the following restrictions:

– Every name test has a concrete QName (e.g., * or // is not allowed).
– All predicates are of the form:

[PathExpr = Literal and . . . and PathExpr = Literal],

where the notations PathExpr and Literal are as defined in the XPath specifica-
tion [8].

For Steps (b) and (c), since the service endpoints are described in WSDL, we can
automatically generate a SOAP envelope to transfer the data, and then send the SOAP
message to the specified endpoint.

Web Browsers as Service-Oriented Clients Integrated with Web Services 295

2.2 Update Mode

Since SOAP communication takes considerable time, it is critical for applications to
determine when we should send messages and when we should wait for the response.
In our framework, we have the following three update modes for the timing of requests,
which determines when we process requests for services (see Fig. 9).

Synchronous. Start the request when the request part is prepared in the DOM tree and
wait until it finishes.

Lazy. Defer the request until the response part is accessed.
Asynchronous. Start the request when the request part is prepared in the DOM tree

but do not wait for the completion at that time. When the response part is accessed,
block the execution until the response is available.

Let us explain the differences of these three update modes by using examples. We sup-
pose that we have just put a request message in the DOM tree (Step (1) in Fig. 5).
In synchronous mode, we call the send(element) API, where element points
at the ws:Request element in Fig. 7. Then the execution is blocked until the
ws:Response part in the DOM (Fig. 8) is updated with the response message. In
lazy mode, we do not have to explicitly call send(element). Instead, we can di-
rectly access the ws:Response element. At that time, if we have not received the
response message, the access is blocked until the ws:Response part is updated. In
asynchronous mode, we explicitly call send(element). But the execution is not
blocked at that time. Then when we access the ws:Response element and if we have
not received the response message, the access will be blocked as in the lazy mode.

Call send() API

Fig. 9. The interaction patterns of the three update modes

Of these approaches, the lazy update has a clear merit for the simplicity of the pro-
gramming model, because we do not have to use any extra API call such as send().
Therefore, the lazy update is the default mode in our framework.

For the other options, we have to explicitly specify when the request part in the
DOM has been prepared. However, the asynchronous update is the preferred option
considering the users’ experience and is aligned with the Ajax style.

296 H. Miyashita and T. Ishihara

2.3 Cache Mechanism

Since the numbers of request and response messages are unlimited, we naturally require
cache mechanisms in our framework, which stores request and response trees and evicts
entries appropriately when the total cache size reaches the set limit.

We cache the response data associated with the corresponding request data. That
means we assume the same request data always returns the same response data. This
assumption is justified because a Web Service is usually designed in a stateless fashion,
i.e., a request message contains all of the information required to invoke a service.

Note that we do require a “pin” mechanism for our cache system for lazy or asyn-
chronous update modes. We have to pin the request data to prevent its eviction until the
updating operation for the response data has been completed.

2.4 Response Transformation

The raw response data from a Web Service does not usually fit the requirements for
browsing. In such cases, transforming the response data is desirable for client-side pro-
grams. This style agrees with separation of concerns. Ideally, the client-side programs
concentrate on presentation issues and delegate the other parts to the transformation
program. In addition, this architectural style is robust against changes of the Web Ser-
vice interfaces. The design goal is that we will only have to update the transformation
programs and that such changes will not affect the client user programs.

XSLT and XQuery are good candidates for performing this kind of XML transforma-
tion. In configurations of our client framework, we can specify these languages for each
service. If we can apply different transformations to different locations in the DOM
tree, it may be helpful for various presentations. For example, we may want to present
stock prices differently in text and in a table, and this mechanism is convenient in such
a case. The client framework automatically applies the specified transformations to the
response messages before storing them in the DOM tree.

Otherwise, as an alternative design choice, we could apply such transformations to
the entire DOM tree. This choice may be convenient for tightly integrated presentations,
since each service query can affect the whole presentation. However, we have to care-
fully organize the transformations and user programs in order to avoid conflicts with
each other.

3 Implementation

We implemented a Web Service framework integrated with Web browsers, WebDrasil,
in accord with the architecture described in Section 2. In Fig. 10, we describe the com-
ponents of WebDrasil. Our WebDrasil has two DOM trees: 1) a Web Service DOM
representing the Web Service request and response messages, which is constructed us-
ing client user programs written in JavaScript via standard APIs and which is transpar-
ently updated with response messages; and 2) an HTML DOM representing an HTML
document, which is provided by a special Web browser supporting the W3C DOM pro-
gramming [9].

Web Browsers as Service-Oriented Clients Integrated with Web Services 297

3.1 Applications on WebDrasil

A DHTML application supporting a Web Service is executed by following these steps
(see Fig. 10): (1) WebDrasil sends the URI to the server to retrieve the application doc-
ument; (2) The corresponding document is received from the server. The HTML DOM
is created by parsing the HTML part of the retrieved document, and the JavaScript en-
gine loads the received JavaScript code; (3) WebDrasil renders the constructed HTML
DOM; (4), (5) If any event caused by user input is detected, the JavaScript function
associated with that event is called; (6) To use a Web Service API, the Web Service
DOM is updated by a JavaScript function using the DOM APIs, or by XPath functions;
(7) When updating a Web Service DOM, a SOAP request is created and sent to the
Web Service server; (8) Then a SOAP response message is sent to WebDrasil and the
Web Service DOM is updated by examining the SOAP response message; (9),(10) The
elements of the Web Service DOM that are necessary for updating the HTML DOM
are retrieved, and the HTML DOM is updated based on them; (11) Finally WebDrasil
renders the updated HTML DOM, and dynamically presents the changes.

(9) Get the response(6) Update by DOM API
 or XPath

(5) Call JavaScript function

Web Service
Server

(7) Request(8) Response

JavaScript Engine

Web Service DOM

HTML DOM

Server

(1) URI

Rendered
HTML

(4) User Input
(3), (11) Rendering

(10) Update by DOM API

(2) JavaScript

(2) HTML

Fig. 10. The components of WebDrasil

Show the Keyword

and Search Results

Select a Keyword

Fig. 11. Mashed-up Google Web Search

3.2 Evaluation of XPath

In order to query services with XPath, WebDrasil has a special XPath interpreter. When
our interpreter successfully matches the given XPath expression with the DOM tree,
it simply returns the matched part. Otherwise, our interpreter splits the XPath expres-
sion into location steps. For each location step, if the current context position is in a
ws:Request element, our interpreter checks whether or not the matched node ex-
ists. Note that there is at most one matched node when the XPath expression obeys the
restrictions in Subsection 2.1. If it does not exist, we create a new node from this lo-
cation step. After evaluating all of the steps, we have an updated DOM tree that has a
node that matches the given XPath expression.

298 H. Miyashita and T. Ishihara

We need to maintain the validity of the Web Service DOM after this update process.
Our interpreter checks the validity of the updated DOM tree by using the schemas in
the WSDL definitions. If it is not valid, our interpreter cancels the entire update.

3.3 JavaScript Examples for a Web Service

In Table 1, we show examples of JavaScript code for updating the Web Service DOM
and invoking a Web Service. Even though these code samples include all of the essential
steps to use the Web Service, they are written by using the XPath APIs, without using
the service-specific interfaces.

The JavaScript code for updating ws:Request element by using the XPath API
is Example 1 in Table 1. The request is created in the Web Service DOM as shown in
Fig. 7. The ws:WebService is the root node of the Web Service DOM, and has the
URL for the WSDL file as its attribute. The WSDL file is used for checking whether or
not the DOM tree is valid. A node like ws:Query represents each query of the Web
Service. Such a node has two children, an element for generating a SOAP request, and
an element for storing a SOAP response corresponding to the request element. The node
ws:Request holds the request as converted to a SOAP request message. The content
of this element is the same as the body of the corresponding SOAP request message.

We can obtain the result of the Google Web Service request by using the code shown
in Example 2 in Table 1, which uses only the XPath API. By this code, the framework
transparently sends the SOAP request message, and changes the Web Service DOM as
shown in Fig. 8, so that ws:Response represents the SOAP response. The content of
this element is the same as the body of the corresponding SOAP response element.

Table 1. Examples of JavaScript codes for handling Web Service DOM, where ws and gws are
prefixes of the namespaces for Web Service DOM and for Google Web Service, respectively; and
webService, response are variables of the Web Service DOM, and the Response element,
respectively

Example 1 : var doGetCachedPage =webService.selectSingleNode(
Update Request element ”./ws:Query[1]/ws:Request/gws:doGetCachedPage
using XPath [key=’0000’ and url=’http://www.ibm.com’]”, webService);
Example 2 : var textNode = response.selectSingleNode(
Get the response using XPath ”./gws:doGetCachedPageResponse/return[1]/text()[1]”, response);

3.4 Application: Google Search Web Service Composed with Another Website

The DHTML application in Fig. 11 shows the benefits of using WebDrasil. This appli-
cation has two visual components: (1) a web page, from which we can extract keywords,
and (2) tables for showing the search history of keywords and the detailed search re-
sults. When the user selects a keyword from the web page, the search for the keyword is
done with Google Web Service, and then the corresponding detailed results are shown
in the detailed result table.

In this application, WebDrasil holds the response messages of the Google Web Ser-
vice in the Web Service DOM. Because of this, the browser can change the presentation

Web Browsers as Service-Oriented Clients Integrated with Web Services 299

dynamically by updating or retrieving the Web Service DOM according to the user’s in-
put. This application is written using only HTML and JavaScript so that we can easily
mash-up it with other websites as shown in Fig. 11.

By using the DOM and XPath APIs, Web developers can make smart and interactive
Web Service DHTML applications such as this example.

4 Related Work

Our framework is built on top of various important studies in such areas as Web browser
integration, Web and Web Service programming models, lazy DOM processing, and
asynchronous interactions.

Web browsers are now such widespread components that integration with Web
browsers is of great interest in various fields such as interactive programming envi-
ronments [10] and collaboration tools [11]. Ponzo and Gruber integrated Web browser
technologies with a rich client platform, Eclipse [9], for a better programming model.
JSON (JavaScipt Object Notation)-RPC [12] is another service invocation method on
Web browser. But it uses another data format familiar to JavaScript instead of XML.

There are some studies on Web Service programming models based on document
processing. ActiveXML [13] introduced dynamic XML documents which consist of
explicitly specified data and dynamic portions to be changed by querying Web ser-
vices. Our work is similar to ActiveXML in that we use dynamically changing DOM.
However, ActiveXML also proposed new query language and programming models. In
contrast, we stick to use DOM and XPath fitting well with the DHTML programming
model to integrate with Web browsers. Fox et al. proposed a collaborative Web Ser-
vice [14] and Qui et al. proposed a collaboration framework using W3C DOM on top
of their Web Service [15]. Their approach is somewhat similar to ours in that we use
DOM for applications, but their framework is designed for collaboration by using the
Web Service architecture, and does not provide a general Web Service programming
model.

Asynchronous update mode involves asynchronous Web Service interactions. The
correlation and coordination issues of asynchronous Web Services are studied in [16].

5 Conclusions and Future Work

We proposed a new client programming model for Web Services, a model which is
document-centric and similar to that of Web browsers. In this programming model,
we manipulate the document tree with uniform APIs such as DOM and XPath rather
than by explicitly sending messages or by invoking non-uniform APIs. We prototyped a
new Web Service client framework, WebDrasil, based on this architecture and provided
some examples of client programs to show that the approach is intelligible and natural
to Web developers.

Since this new programming model is based on many elementary technologies such
as XML processing and distributed systems, we still have a lot of work to do:

300 H. Miyashita and T. Ishihara

XPath Query Model
In Subsection 2.1, we offered a rudimentary XPath-based query method for Web
Services. However, we would like to have a more convenient and complete model
for this purpose, one that would allow us to statically check or supplement XPath
queries while considering the constraints of schemas. For example, if a schema
specifies only one “key” element is allowed in the request message, then any XPath
query for this service must contain a predicate only for that “key” element. We
think match-identifying tree automata [17] could be used for this model.

Server-side Approach
In this paper, we introduced our framework on the client side of the Web appli-
cations, specifically in the Web browsers. However, our framework could also be
applicable to the server side. For example, we could build a Web-Service-gateway
server which feeds DHTML applications to the Web browsers and accepts requests
from the browsers, and which then appropriately forwards them to external SOAP
Web Service servers. By using such a gateway, Web browsers without support for
SOAP Web Services could access those services. Also, in such a gateway, our
framework would work well because the Web browsers would present XML docu-
ments rather than JavaScript objects.

Web Service Coordination and Security
When we use multiple services in our client framework, we need some coordination
and security framework for reliable communications. Since, in our framework, we
store the responses in one DOM tree, we require transactional cache mechanisms to
maintain consistency and security mechanisms to prevent illegal accesses for DOM
tree processing. Since our framework allows client-side scripting, such an access
control mechanism is important to prevent XSS (Cross-Site Scripting) attacks.

Acknowledgments

We warmly thank to Makoto MURATA for helpful advises to improve this paper. This
research was partly supported by the National Institute of Information and Communi-
cations Technology (NICT) of Japan as a part of the Multimedia Browsing Project for
People with Visual Impairments.

References

1. J. Whatcott, “SOA’s next wave: Service-oriented clients,” May 2006, http://www.cio.com/
weighin/column.html?CID=21201.

2. H. Dhurvasula and M. Galli, “Mozilla and web services,” http://www.mozilla.org/projects/
webservices/.

3. T. O’Reilly, “What is web 2.0,” September 2005, http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-20.html.

4. J. J. Garrett, “Ajax: A new approach to Web applications,” February 2005, http://
www.adaptivepath.com/publications /essays/archives/000385.php.

5. “Java api for xml web services (JAX-WS),” 2005, http://java.sun.com/webservices/
jaxws/index.jsp.

http://www.cio.com/weighin/column.html?CID=21201
http://www.cio.com/weighin/column.html?CID=21201
http://www.mozilla.org/projects/webservices/
http://www.mozilla.org/projects/webservices/
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.adaptivepath.com/publications /essays/archives/000385.php
http://www.adaptivepath.com/publications /essays/archives/000385.php
http://java.sun.com/webservices/jaxws/index.jsp
http://java.sun.com/webservices/jaxws/index.jsp

Web Browsers as Service-Oriented Clients Integrated with Web Services 301

6. K. Ballinger, D. Ehnebuske, M. Gudgin, C. K. Liu, M. Nottingham, and P. Yendluri, “WS-I
basic profile version 1.1,” http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html.

7. S. Loughran and E. Smith, “Rethinking the Java SOAP stack.” in ICWS, 2005, pp. 845–852.
8. J. Clark and S. DeRose, “XML Path Language (XPath) Version 1.0,” w3C Recommendation

16 November 1999, http://www.w3.org/TR/1999/REC-xpath-19991116.
9. J. Ponzo and O. Gruber, “Integrating Web technologies in Eclipse,” IBM Systems Journal,

vol. 44, no. 2, pp. 279–288, 2005.
10. M. Jambalsuren and Z. Cheng, “An interactive programming environment for enhancing

learning performance,” in Databases in Networked Information Systems, 2002, pp. 201–212.
11. K. M. Anderson and N. O. Bouvin, “Supporting project awareness on the www with the

iscent framework,” SIGGROUP Bull., vol. 21, no. 3, pp. 16–20, 2000.
12. R. Barcia, “Build enterprise soa ajax clients with the dojo toolkit and json-rpc,” http://www-

128.ibm.com/developerworks/websphere/library/techarticles/0606 barcia/0606 barcia.html.
13. S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo, “Dynamic XML documents

with distribution and replication,” in SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. New York, NY, USA: ACM Press, 2003,
pp. 527–538.

14. G. Fox, H. Bulut, K. Kim, S.-H. Ko, S. Lee, S. Oh, S. Pallickara, X. Qiu, A. Uyar, M. Wang,
and W. Wu, “Collaborative web services and peer-to-peer girds,” in Collaborative Technolo-
gies Symposium, 2003.

15. X. Qiu, B. Carpenter, and G. Fox, “Internet collaboration using the w3c document object
model.” in International Conference on Internet Computing, 2003, pp. 643–647.

16. M. Brambilla, S. Ceri, M. Passamani, and A. Riccio, “Managing asynchronous web services
interactions.” in ICWS, 2004, pp. 80–87.

17. M. MURATA, “Extended path expressions for XML,” in PODS, 2001, pp. 126–137.

	Introduction
	The Gaps in the Web Services Frameworks
	Document-Based Web Service Framework

	Web Service Architecture Based on Web Browsers
	Querying Services
	Update Mode
	Cache Mechanism
	Response Transformation

	Implementation
	Applications on WebDrasil
	Evaluation of XPath
	JavaScript Examples for a Web Service
	Application: Google Search Web Service Composed with Another Website

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

