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Abstract. Cellular and molecular imaging promises powerful tools for
the visualization and elucidation of important disease-causing biologi-
cal processes. Recent research aims to simultaneously assess the spatial-
spectral/temporal distributions of multiple biomarkers, where the signals
often represent a composite of more than one distinct source independent
of spatial resolution. We report here a blind source separation method
for quantitative dissection of mixed yet correlated biomarker patterns.
The computational solution is based on a latent variable model, whose
parameters are estimated using the non-negative least-correlated com-
ponent analysis (nLCA) proposed in this paper. We demonstrate the
efficacy of the nLCA with real bio-imaging data. With accurate and
robust performance, it has powerful features which are of considerable
widespread applicability.

1 Introduction

Multichannel biomedical imaging promises simultaneous imaging of multiple
biomarkers, where the pixel values often represent a composite of multiple
sources independent of spatial resolution. For example, in vivo multispectral
imaging exploits emissions from multiple fluorescent probes, aiming at discrimi-
nating often overlapped spatial-spectral distributions and reducing background
autofluorescence [1,2]. Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) utilizes various molecular weight contrast agents to investigate tu-
mor microvascular status and then obtain the information about the therapeutic
effect under anti-angiogenic drugs. However, due to the heterogeneous nature of
tumor microvessels associated with different perfusion rate, DCE-MRI measured
signals are the mixture of the permeability images corresponding to fast perfu-
sion and slow perfusion. Further examples include dynamic positron emission
tomography, and dynamic optical molecular imaging [1].

The major efforts for computational separation of composite biomarker dis-
tributions are: supervised spectrum unmixing [2], a priori weighted subtrac-
tion [3], parametric compartment modeling and independent component analy-
sis (ICA) [4, 5]. The major limitations associated with the existing methods are
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Fig. 1. Block diagram of 2 × 2 mixing and demixing systems

the inability of acquiring in vivo spectra of the probes (e.g., individual physio-
logical conditions and microenvironment, pH, temperature, oxygen, blood flow,
etc.) [2] and the unrealistic assumptions about the characteristics of the un-
known sources and mixing processes (e.g., source independence, model iden-
tifiability, etc.) [5, 6]. Our goal and effort therefore, is to develop a novel blind
source separation (BSS) method that is able to separate correlated or dependent
sources under non-negativity constraints [7]. This new BSS method is called the
non-negative least-correlated component analysis (nLCA) whose principle and
applications will be reported in detail here.

In the next section, we present the nLCA, including model assumptions, the-
ory and computational methods for blind separation of non-negative sources
with a given set of observations of a non-negative mixing system. In Section
3, we demonstrate the efficacy of the nLCA by two experiments (human face
images and DCE-MRI analysis) and its performance superior to some existing
algorithms followed by a discussion of future research.

2 Non-negative Least-Correlated Component Analysis

As shown in Fig. 1, consider a 2 × 2 non-negative mixing system with the input
signal vector s[n] = (s1[n], s2[n])T (e.g., images of two different types of cells)
and the output vector

x[n] = (x1[n], x2[n])T = As[n] (1)

where the superscript ‘T ’ denotes the transpose of a matrix or vector and
A = {aij}2×2 is the unknown non-negative mixing matrix. The blind source
separation problem is to find a demixing matrix W from the given measure-
ments x[n], n = 1, 2, ..., L, such that

y[n] = (y1[n], y2[n])T = Wx[n] = WAs[n] ≈ Ps[n] (2)
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i.e., WA � P (permutation matrix). Alternatively, let

xi = (xi[1], xi[2], ..., xi[L])T , i = 1, 2, (ith observation) (3)

si = (si[1], si[2], ..., si[L])T , i = 1, 2, (ith unknown source) (4)

yi = (yi[1], yi[2], ..., yi[L])T , i = 1, 2. (ith extracted source) (5)

Then the observations x1 and x2, and the extracted sources y1 and y2 can be
expressed as [

xT
1

xT
2

]
= A

[
sT
1

sT
2

]
, (6)

[
yT

1

yT
2

]
= W

[
xT

1

xT
2

]
, (7)

respectively.
For ease of later use, the correlation coefficient and the angle between s1 and

s2 are defined as

ρ(s1, s2) =
sT
1 s2

‖s1‖ · ‖s2‖
, (8)

θ(s1, s2) = cos−1(ρ(s1, s2)), (9)

respectively, where ‖si‖ (= (sT
i si)1/2) is the norm of si. Next, let us present the

assumptions and the associated theory and methods of the nLCA, respectively.

2.1 Model Assumptions

Let us make some assumptions about the sources s1 and s2, and the mixing
matrix A as follows:

(A1) s1 � 0 and s2 � 0 (i.e., s1[n] ≥ 0, s2[n] ≥ 0 for all n), and the two distinct
sources s1 and s2 are linearly independent (i.e., s2 �= αs1 where α �= 0).

(A2) A � 0 (i.e., all the entries of A are non-negative).
(A3) A is full rank (i.e., nonsingular).
(A4) A · 1 = 1, where 1 = (1, 1)T (i.e., the sum of the entries of each row of A

is equal to unity).

Assumptions (A1) and (A2) hold valid in biomedical imaging applications [6]
where all the sources and all the entries of the mixing matrix are non-negative,
and meanwhile s1 and s2 are allowed to be correlated (i.e., s̃T

1 s̃2/L �= 0 where
s̃i = (si[1]−μi, si[2]−μi, ..., si[L]−μi)T in which μi =

∑L
n=1 si[n]/L). Assump-

tions (A1) and (A3) imply that the two observations x1 and x2 are linearly
independent vectors (i.e., x2 �= αx1 where α �= 0). Note that the assumption
that sources are mutually statistically independent is a fundamental assumption
made by most ICA algorithms that requires s̃T

1 s̃2/L = 0 (uncorrelated).
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2.2 Theory and Methods

The proposed nLCA is supported by the following theorem.

Theorem 1 (Correlation Increase Theorem). Under Assumptions (A1) and
(A2), ρ(x1, x2) ≥ ρ(s1, s2) (or θ(x1, x2) ≤ θ(s1, s2)) as shown in Fig. 2.

1 2( )θ ,s s
o

1 2( )θ x , x
1x

1s

2x R
2s

Fig. 2. Observation vectors x1 and x2 which are inside the shaded region R formed
by source vectors s1 and s2

The proof of Theorem 1 is given in Section 4.1. Theorem 1 implies that linear
non-negative mixing of non-negative sources leads to increase of the correlation
coefficient. Based on Theorem 1, a straightforward method, referred as Method
1, is to design the demixing matrix W by reducing the correlation coefficient
ρ(y1, y2) (i.e., maximizing the angle θ(y1, y2)) of the extracted sources, subject
to the two constraints y[n] � 0 (i.e., y[n] ≈ Ps[n]) and W · 1 = 1 (due to
W(A · 1) = P · 1 = 1).

Method 1 (A direct method)
The demixing matrix W is obtained as

W� = arg min
W

ρ(y1, y2)

subject to y[n] � 0, ∀n (i.e., y1 � 0 and y2 � 0) and W · 1 = 1.

Finding the optimum demixing matrix W� is apparently a nonlinear and non-
convex optimization problem. Fortunately, a closed-form solution for W� can be
shown to be

W� =

⎡
⎣ − tan φ(x[k1])

1−tan φ(x[k1])
1

1−tan φ(x[k1])
− tan φ(x[k2])
1−tan φ(x[k2])

1
1−tan φ(x[k2])

⎤
⎦ (10)

where

tan φ(x[k1]) = x2[k1]/x1[k1] = max
n

{x2[n]/x1[n]}, (11)

tan φ(x[k2]) = x2[k2]/x1[k2] = min
n

{x2[n]/x1[n]}. (12)
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The proof of (10) is given in Section 4.2. Next let us present an indirect method.
The second method is to estimate the mixing matrix A from the given obser-

vations x1 and x2, based on the following theorem.

Theorem 2. Suppose that Assumptions (A1) and (A2) hold true, and that
there exist s[l1] = (s1[l1] �= 0, 0)T and s[l2] = (0, s2[l2] �= 0)T for some l1 and l2.
Let

φ(x[k1]) = max{φ(x[l1] = As[l1]), φ(x[l2] = As[l2])},

φ(x[k2]) = min{φ(x[l1]), φ(x[l2])}.

Then 0 ≤ φ(x[k2]) ≤ φ(x[n]) ≤ φ(x[k1]) ≤ π/2, ∀n.

Scatter plot after mixingScatter plot before mixing

2[ ]ls

1[ ]ls

2 1[ ] ( [ ])l lx x

1 2[ ] ( [ ])l lx x
1R

2R

Fig. 3. Scatter plot coverage (R1) of two sources and that (R2) of the two associated
observations

The proof of Theorem 2 is given in Section 4.3. By Theorem 2, if s[l1] =
(s1[l1] �= 0, 0)T and s[l2] = (0, s2[l2] �= 0)T for some l1 and l2 are two points
each on one edge of the scatter plot of s1 and s2, a two-dimensional plot of
s[n], n = 1, ..., L, (i.e., the shaded region R1 in Fig. 3). Then the associ-
ated x[l1] and x[l2] will also be on each of the two edges of the scatter plot
of x1 and x2, (i.e., the shaded region R2 ⊆ R1 in Fig. 3), respectively. In
view of this observation, the unknown mixing matrix A can be easily solved
from

tan φ(x[l1]) = x2[l1]/x1[l1] = a21/a11, (13)
tan φ(x[l2]) = x2[l2]/x1[l2] = a22/a12, (14)
A · 1 = 1, (15)

and the solutions for a11 and a21 are given by

a11 =
1 − tan φ(x[l2])

tanφ(x[l1]) − tanφ(x[l2])
, (16)

a21 =
(1 − tan φ(x[l2])) tanφ(x[l1])

tanφ(x[l1]) − tan φ(x[l2])
, (17)

which together with (15) lead to the solution for A. The above procedure for
estimating A, referred as to Method 2, is summarized as follows:



156 F.-Y. Wang et al.

Method 2 (An indirect method)
Find tanφ(x[k1]) and tanφ(x[k2]) using (11) and (12), and set l1 = k1 and
l2 = k2. Obtain a11 and a21 using (16) and (17), respectively, and then obtain
a12 = 1 − a11 and a22 = 1 − a21. Finally, obtain W = A−1.

Let us conclude this section with the following two remarks.

Remark 1. The condition that s[l1] = (s1[l1] �= 0, 0)T and s[l2] = (0, s2[l2] �= 0)T

for some l1 and l2 exist as stated in Theorem 2 guarantees that the estimate A
obtained by Method 2 is existent and unique up to a column permutation of
A. Under the same condition, one can easily prove that W�A = P (see (10)),
implying the existence and uniqueness of the estimate A for Method 1 up to a
column permutation of A. However, this condition may not be perfectly satis-
fied but approximately satisfied in practical applications, i.e., s[l1] = (s1[l1] �=
0, s2[l1] � 0)T and s[l2] = (s1[l2] � 0, s2[l2] �= 0)T for some l1 and l2. For ex-
ample, non-overlapping region (for which s[n] = (s1[n] �= 0, s2[n] � 0)T and
s[n] = (s1[n] � 0, s2[n] �= 0)T ) in the spatial distribution of a fast perfusion and
a slow perfusion source images on brain MRI [8] is usually higher than 95%.
The estimated sources y1 and y2 turn out to be approximations of the original
sources s1 and s2.

Remark 2. The proposed nLCA is never limited by Assumption (A4). As A·1 �=
1, the mixing model given by (1) can be converted into the following model:

x̃[n] = D1x[n] = (D1AD2)D−1
2 s[n] = Ãs̃[n] (18)

where D1 = diag{1/
∑

n x1[n], 1/
∑

n x2[n]} and D2 = diag{
∑

n s1[n],
∑

n s2[n]}
(2 × 2 diagonal matrices), Ã = D1AD2 for which Assumptions (A2), (A3) and
(A4) (Ã · 1 = 1) are satisfied, and the sources are s̃[n] = D−1

2 s[n] (instead of
s[n]) for which Assumption (A1) is also satisfied.

3 Experiments and Discussion

So far, we have described the theory behind nLCA, and have presented two
nLCA methods to separate composite biomarker distributions. We shall now
illustrate the efficacy of the proposed nLCA using mixtures of real multichannel
images.

The first experiment reports the effectiveness of the nLCA for mixtures of
two correlated human face images taken from the benchmarks in [11]. For the
second experiment, the proposed nLCA is applied to DCE-MRI of breast cancer,
where the two source images correspond to the permeability distributions of a
fast perfusion image and a slow perfusion image in the region of interest [5]. In
each of the two experiments, 50 randomly independent mixtures were generated
and then processed using Method 2, and three existing algorithms, FastICA [9],
non-negative ICA (nICA) [6], and non-negative matrix factorization (NMF) [10]
for performance comparison. The average of the error index E1 [8] over the 50
independent runs was calculated as the performance index, where
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E1 =
2∑

i=1

⎡
⎣
⎛
⎝ 2∑

j=1

|p̃ij |
maxk{|p̃ik|}

⎞
⎠ − 1

⎤
⎦ +

2∑
j=1

[(
2∑

i=1

|p̃ij |
maxk{|p̃kj |}

)
− 1

]
(19)

where p̃ij denotes the (i, j)-element of P̃ = WA. Note that the value of E1 is
smaller for P̃ closer to a permutation matrix.

The averaged E1 associated with the proposed nLCA, and FastICA, nICA,
NMF for the human face experiment are displayed in Table 1. One can see from
this table that the proposed nLCA performs best, the nICA second, the FastICA
third, and the NMF fourth.

In order to further illustrate the performance insights of the four non-negative
source separation algorithms under test. A typical set of results of the human
face experiment is displayed in Fig. 4, including two original source images s1, s2
and the associated scatter plot, observations x1, x2 and the associated scatter
plot, the extracted source images y1, y2 and the associated scatter plots obtained
by the four algorithms. Some observations from Fig. 4 are as follows. The scatter
plots shown in Figs. 4(a) and 4(b) are similar to those shown in Fig. 3 and thus
consistent with Theorem 2. The scatter plot associated with the proposed nLCA
shown in Fig. 4(c) resembles that shown in Fig. 4(a) much better than the other
scatter plots.

As previously mentioned, DCE-MRI provides temporal mixtures of heteroge-
neous permeability distributions corresponding to slow and fast perfusion rates.
The second experiment is to separate the two perfusion distributions from their
mixtures. The averaged E1 associated with the proposed nLCA, and FastICA,
nICA, NMF are also displayed in Table 1. Moreover, a typical set of results of
the DCE-MRI experiment corresponding to those shown in Fig. 4 is displayed in
Fig. 5. Again, the same conclusions obtained from the human face experiment
apply to the DCE-MRI experiment, i.e., the proposed nLCA outperforms the
other three algorithms. These experimental results demonstrate the efficacy of
the proposed nLCA.

Next let us discuss why the proposed nLCA performs better than FastICA,
nICA, NMF. FastICA and nICA are statistical BSS algorithms under the as-
sumption of non-Gaussian independent sources for the former, and the assump-
tion of non-negative uncorrelated and well-grounded sources (i.e., probability
Pr{si[n] < δ} > 0 for any δ > 0) for the latter. However, the sources in the
above experiments are correlated as in many other biomedical imaging appli-

Table 1. The performance (averaged E1) of the proposed nLCA and FastICA, nICA
and NMF for the human face and DCE-MRI experiments

Method nLCA FastICA nICA NMF

Human face
Averaged experiment 0.082 0.453 0.369 0.640

E1 DCE-MRI
experiment 0 0.162 0.114 0.432
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(a) (b) (c) (d) (e) (f)

Fig. 4. Human face images (top and middle rows) and associated scatter plots (bottom
row) for (a) the sources, (b) the observations and the extracted sources obtained by
(c) nLCA, (d) FastICA, (e) nICA, and (f) NMF

(a) (b) (c) (d) (e) (f)

Fig. 5. DCE-MRI images (top and middle rows) and associated scatter plots (bottom
row) for (a) the sources (permeability) corresponding to the slow (top plot) and fast
(middle plot) perfusion, (b) the observations and the extracted sources obtained by (c)
nLCA, (d) FastICA, (e) nICA, and (f) NMF

cations, implying that the source independence assumption made by FastICA
and nICA is not satisified. On the other hand, both the proposed nLCA and
NMF are algebraic approaches basically under the same realistic assumptions
(i.e., Assumptions (A1), (A2) and (A3)). However, the proposed nLCA has op-
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timum and closed-form solutions (either for the demixing matrix W or for the
mixing matrix A) for Methods 1 and 2, but NMF is an iterative algorithm which
may provide a local optimum solution. Therefore, the proposed nLCA is com-
putationally efficient and outperforms the other three algorithms in the above
experiments.

We believe that the proposed nLCA is a promising method for blind sepa-
ration of multiple biomarker patterns. We would expect it to be an effective
image formation tool applicable to many other multichannel biomedical imaging
modalities [1]. Extension of the proposed nLCA to the case of more than two
sources and its performance in the presence of measurement noise are currently
under investigation.
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4 Appendix

4.1 Proof of Theorem 1

Let V be a 2-dimensional vector space spanned by the linearly independent
vectors s1 and s2 for which 0 ≤ ρ(s1, s2) < 1. Let u1 = s1/‖s1‖, and u2 (which
can be obtained via Gram-Schmidt orthogonalization) be a set of orthonormal
basis vectors of V . Then any vector in V can be represented in terms of u1 and
u2, as shown in Fig. 6.

o

2s

1x
2x

1s
1( )θ x

2( )θ x2( )θ s

1u

2u

Fig. 6. Source vectors and observation vectors after non-negative mixing

Let θ(v) denote the angle between u1 and v ∈ V . Then

x1 = a11s1 + a12s2

= a11‖s1‖u1 + a12‖s2‖[cos(θ(s2))u1 + sin(θ(s2))u2]
= [a11‖s1‖ + a12‖s2‖ cos(θ(s2))]u1 + [a12‖s2‖ sin(θ(s2))]u2

which implies that

0 ≤ tan θ(x1) =
sin(θ(s2))

a11‖s1‖
a12‖s2‖ + cos(θ(s2))

≤ tan θ(s2),

i.e., 0 ≤ θ(x1) ≤ θ(s2). Similarly, one can prove 0 ≤ θ(x2) ≤ θ(s2). There-
fore, |θ(x2) − θ(x1)| ≤ θ(s2) and ρ(x1, x2) = cos(θ(x2) − θ(x1)) ≥ ρ(s1, s2) =
cos(θ(s2)).

4.2 Proof of (10)

Consider a 2-dimensional plane of (ω1, ω2). The constraint of ω1+ω2 = 1 includes
the following two cases:

Case 1: w11 + w12 = 1 for (ω1 = w11, ω2 = w12).
Case 2: w21 + w22 = 1 for (ω1 = w21, ω2 = w22).

As shown in Fig. 7, all the points on the line segment AB satisfy ω1 + ω2 = 1
and ω1x1[n] + ω2x2[n] ≥ 0, where the coordinates of the points A and B are
given by
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A

(1,0)

(0,1)

1 2 1ω ω+ =

1ω

2ω

1 1 1 2 2 1[ ] [ ] 0x k x kω ω+ =

1 1 2 2 2 2[ ] [ ] 0x k x kω ω+ =

B

ο

Fig. 7. Feasible region of ω1 and ω2 (same for both Cases 1 and 2) satisfying ω1+ω2 = 1
and ω1x1[n] + ω2x2[n] ≥ 0 for all n

ωA =
(

−x2[k1]
x1[k1] − x2[k1]

,
x1[k1]

x1[k1] − x2[k1]

)
,

ωB =
(

−x2[k2]
x1[k2] − x2[k2]

,
x1[k2]

x1[k2] − x2[k2]

)
.

Note that ω1x1[n] + ω2x2[n] = y1[n] for Case 1 and ω1x1[n] + ω2x2[n] = y2[n]
for Case 2.

Consider the vector space V as presented in the proof of Theorem 1 in Section
4.1. Both of x1 and x2 must be on the line passing s1 and s2 due to the con-
straints a11 + a12 = 1 and a21 + a22 = 1, respectively. Moreover, both of y1 and
y2 must be on the line passing x1 and x2 due to the constraints w11 + w12 = 1
and w21 + w22 = 1, respectively. Decreasing ρ(y1, y2) is equivalent to increasing
the angle between the vectors y1 and y2 as shown in Fig. 8, i.e., both w11 and
w22 must be positive and meanwhile w12 and w21 must be negative. Minimum
ρ(y1, y2) corresponds to the values of wij with maximum |wij |. In other words,
the optimum solution for (w11, w12) corresponds to either the point A or the
point B in Fig. 7, so does the optimum solution for (w21, w22). Therefore, the
optimum demixing matrix is given by W� =

[
ωT

A, ωT
B

]T which can be easily
proven to be the one given by (10).

4.3 Proof of Theorem 2

Because of φ(s[l1]) = 0, φ(s[l2]) = π/2, one can easily see

tan φ(x[n]) =
x2[n]
x1[n]

=
a21s1[n] + a22s2[n]
a11s1[n] + a12s2[n]

=
a21 + a22 tan φ(s[n])
a11 + a12 tan φ(s[n])

. (20)
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1x

12 2w x

1y

2x
2y

21 1w x

22 2w x

11 1w x

1s

2s

ο

Fig. 8. Vector diagram of source signals (si), observations (xi) and extracted signals
(yi)

By (20), (13) and (14), one can easily obtain

tan φ(x[n]) − tan φ(x[l1]) =
det(A) tan φ(s[n])

a11 + a12 tan φ(s[n])
, (21)

tan φ(x[n]) − tan φ(x[l2]) =
− det(A)/a12

a11 + a12 tan φ(s[n])
, (22)

where det(A) = a11a22 − a21a12. One can easily infer, from (21) and (22), that
φ(x[l1]) ≤ φ(x[n]) ≤ φ(x[l2]) if det(A) ≥ 0, and φ(x[l2]) ≤ φ(x[n]) ≤ φ(x[l1])
if det(A) ≤ 0, implying φ(x[k2]) ≤ φ(x[n]) ≤ φ(x[k1]), ∀n. Thus, we have com-
pleted the proof.
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