Skip to main content

Lower Bounds on the Approximation of the Exemplar Conserved Interval Distance Problem of Genomes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4112))

Abstract

In this paper we present several lower bounds on the approximation of the exemplar conserved interval distance problem of genomes. We first prove that the exemplar conserved interval distance problem cannot be approximated within a factor of clogn for some constant c>0 in polynomial time, unless P=NP. We then prove that it is NP-complete to decide whether the exemplar conserved interval distance between any two sets of genomes is zero or not. This result implies that the exemplar conserved interval distance problem does not admit any approximation in polynomial time, unless P=NP. In fact, this result holds even when a gene appears in each of the given genomes at most three times. Finally, we strengthen the second result under a weaker definition of approximation (which we call weak approximation). We show that the exemplar conserved interval distance problem does not admit a weak approximation within a factor of m, where m is the maximum length of the given genomes.

This research is supported in part by FIPSE Congressional Award P116Z020159, NSF CNS-0521585, Louisiana Board of Regents under contract number LEQSF(2004-07)-RD-A-35 and MSU-Bozeman’s Short-term Professional Development Leave Program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bafna, V., Pevzner, P.: Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome. Mol. Bio. Evol. 12, 239–246 (1995)

    Google Scholar 

  2. Bereg, S., Zhu, B.: RNA multiple structural alignment with longest common subsequences. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 32–41. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Acad. Pub., Dordrecht (2000)

    Google Scholar 

  6. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 291–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2004)

    Google Scholar 

  8. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Makaroff, C., Palmer, J.: Mitochondrial DNA rearrangements and transcriptional alternatives in the male sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 8, 1474–1480 (1988)

    Google Scholar 

  10. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. Theoretical Computer Science 325(3), 347–360 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nguyen, C.T.: Algorithms for calculating exemplar distances, Honors Thesis, School of Computing, National University of Singapore (2005)

    Google Scholar 

  12. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)

    Article  Google Scholar 

  13. Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evolut. 27, 87–97 (1988)

    Article  Google Scholar 

  14. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP. In: Proc. 29th ACM Symp. on Theory Comput (STOC 1997), pp. 475–484 (1997)

    Google Scholar 

  15. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–917 (1999)

    Article  Google Scholar 

  16. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura, and their use in the study of the history of the species. Proc. Nat. Acad. Sci. USA 22, 448–450 (1936)

    Article  Google Scholar 

  17. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theoretical Biology 99, 1–7 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Fowler, R.H., Fu, B., Zhu, B. (2006). Lower Bounds on the Approximation of the Exemplar Conserved Interval Distance Problem of Genomes. In: Chen, D.Z., Lee, D.T. (eds) Computing and Combinatorics. COCOON 2006. Lecture Notes in Computer Science, vol 4112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11809678_27

Download citation

  • DOI: https://doi.org/10.1007/11809678_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36925-7

  • Online ISBN: 978-3-540-36926-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics