Skip to main content

An Efficient Keyframe Extraction from Motion Capture Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Abstract

This paper proposes a keyframe extraction method based on a novel layered curve simplification algorithm for motion capture data. Bone angles are employed as motion features and keyframe candidates can be selected based on them. After that, the layered curve simplification algorithm will be used to refine those candidates and the keyframe collection can be gained. To meet different requirements for compression and level of detail of motion abstraction, adaptive extraction parameters are also applied. The experiments demonstrate that our method can not only compress and summarize the motion capture data efficiently, but also keep the consistency of keyframe collection between similar human motion sequences, which is of great benefit to further motion data retrieval or editing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terra, S.C.L., Metoyer, R.A.: Performance Timing for Keyframe Animation. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 253–258 (2004)

    Google Scholar 

  2. Whitaker, H., Halas, J.: Timing for Animation. Focal Press, Burlington (1981)

    Google Scholar 

  3. Parent, R.: Computer Animation: Algorithms and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  4. Liu, F., et al.: 3d Motion Retrieval with Motion Index Tree[J]. Computer Vision and Image Understanding 92(2-3), 265–284 (2003)

    Article  Google Scholar 

  5. Junxing, S., Shouqian, S., Yunhe, P.: Key-Frame Extraction from Motion Capture Data. Journal of Computer-aided Design & Computer Graphics 16(5), 719–723 (2004)

    Google Scholar 

  6. Lim, I.S., Thalmann, D.: Key-Posture Extraction Out of Human Motion Data by Curve Simplification[C]. In: Proc. EMBC2001, 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1167–1169 (2001)

    Google Scholar 

  7. Pickering, M.J., Ruger, S.: Evaluation of key frame-based retrieval techniques for video. Comput. Vis. Image Understand 92(2), 217–235 (2003)

    Article  Google Scholar 

  8. Zhuang, Y., Rui, Y., Huang, T.S.: Adaptive Key Frame Extraction Using Unsupervised Clustering[A]. In: IEEE ICIP 1998, Chicago, USA (October 1998)

    Google Scholar 

  9. Zhuang, Y., Pan, Y., Wu, F.: Web-based Multimedia Information Analysis and Retrieval. Tsinghua University Press (2002)

    Google Scholar 

  10. Barbic, J., Safonova, A., Pan, J.-Y., Faloutsos, C., Hodgins, J.K., Pollard, N.S.: Segmenting Motion Capture Data into Distinct Behaviors. In: Proceedings of Graphics Interface, pp. 185–194 (2004)

    Google Scholar 

  11. Brand, M.E., Kettnaker, V.: Discovery and segmentation of activities in video. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 22(8), 844–851 (2000)

    Article  Google Scholar 

  12. Park, M.J., Shin, S.Y.: Example-based motion cloning. Comput. Animat. Virtual Worlds 15(3-4), 245–257 (2004)

    Article  Google Scholar 

  13. Huang, K.-S., Chang, C.-F., Hsu, Y.-Y., Yang, S.-N.: Key Probe: a technique for animation keyframe extraction. The Visual Computer 21(8-10), 532–541 (2005)

    Article  Google Scholar 

  14. Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive Control of Avatars Animated with Human Motion Data[A]. In: Proceedings SIGGRAPH 2002[C], San Antonio, Texas, pp. 491–500 (2002)

    Google Scholar 

  15. Chui, C.Y., Chao, S.P., Wu, M.Y., Yang, S.N., Lin, H.C.: Content-based Retrieval for Human Motion Data[J]. Journal of Visual Communication and Image Representation 16(3), 446–466 (2004)

    Article  Google Scholar 

  16. Mueller, M., Roeder, T., Clausen, M.: Efficient Content-Based Retrieval of Motion Capture Data[A]. In: Proceedings of ACM SIGGRAPH 2005[C], vol. 24(3), pp. 677–685 (2005)

    Google Scholar 

  17. Rosin, P.L.: Techniques for Assessing Polygonal Approximations of Curve[J]. IEEE Transactions on Pattern Recognition and Machine Intelligence 19(6), 659–666 (1997)

    Article  Google Scholar 

  18. Fritsch, F.N., Carlson, R.E.: Monotone Piecewise Cubic Interpolation. SIAM J. Numerical Analysis 17, 238–246 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiao, J., Zhuang, Y., Yang, T., Wu, F. (2006). An Efficient Keyframe Extraction from Motion Capture Data. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_44

Download citation

  • DOI: https://doi.org/10.1007/11784203_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics