Skip to main content

Rule Learning for Disease-Specific Biomarker Discovery from Clinical Proteomic Mass Spectra

  • Conference paper
Data Mining for Biomedical Applications (BioDM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3916))

Included in the following conference series:

Abstract

A major goal of clinical proteomics is the identification of protein biomarkers from mass spectral analyses of fairly easily obtainable samples such as blood serum, urine or cerebrospinal fluid from patient populations. It is hoped that such protein biomarkers can be utilized for early detection of disease and examined further for potential therapeutic use. In this paper, we present the process for successful discovery of biomarkers that are indicators of a chronic neurodegenerative disease of motor neurons, called Amyotrophic Lateral Sclerosis; from application of rule learning to the analysis of proteomic mass spectra from cerebrospinal fluid samples. We have implemented a wrapper-based rule learning framework within which the massive number of features that accumulate from mass spectral analyses of clinical samples can be evaluated by repeated invocation of a rule learner. Our framework facilitates evidence gathering as indicated in this case study, and can speed up disease-specific biomarker discovery from clinical proteomic mass spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Srinivas, P.R., Verma, M., Zhao, Y., Srivastava, S.: Proteomics for cancer biomarker discovery. Clin. Chem. 48(8), 1160–1169 (2002)

    Google Scholar 

  2. Tyers, M., Mann, M.: From genomics to proteomics. Nature 422(6928), 193–197 (2003)

    Article  Google Scholar 

  3. Cazares, L.H., Adam, B.L., Ward, M.D., Nasim, S., Schellhammer, P.F., Semmes, O.J., Wright Jr., G.L.: Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin. Cancer. Res. 8(8), 2541–2552 (2002)

    Google Scholar 

  4. Wright, G.L., Cazares, L.H., Leung, S.M., Nasim, S., Adam, B.L., Yip, T.T., Schellhammer, P.F., Gong, L., Vlahou, A.: Proteinchip(R) surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis. 2(5/6), 264–276 (1999)

    Google Scholar 

  5. Adam, B.L., Qu, Y., Davis, J.W., Ward, M.D., Clements, M.A., Cazares, L.H., Semmes, O.J., Schellhammer, P.F., Yasui, Y., Feng, Z., Wright Jr., G.L.: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62(13), 3609–3614 (2002)

    Google Scholar 

  6. Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.A.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306), 572–577 (2002)

    Article  Google Scholar 

  7. Coombes, K.R., Morris, J.S., Hu, J., Edmonson, S.R., Baggerly, K.A.: Serum proteomics profiling–a young technology begins to mature. Nat. Biotechnol. 23(3), 291–292 (2005)

    Article  Google Scholar 

  8. Bensmail, H., Golek, J., Moody, M.M., Semmes, J.O., Haoudi, A.: A novel approach for clustering proteomics data using Bayesian fast Fourier transform. Bioinformatics 21(10), 2210–2224 (2005)

    Article  Google Scholar 

  9. Fung, E.T., Weinberger, S.R., Gavin, E., Zhang, F.: Bioinformatics approaches in clinical proteomics. Expert Rev. Proteomics 2(6), 847–862 (2005)

    Article  Google Scholar 

  10. Seibert, V., Ebert, M.P., Buschmann, T.: Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief Funct. Genomic. Prot. 4(1), 16–26 (2005)

    Article  Google Scholar 

  11. Ranganathan, S., Williams, E., Ganchev, P., Gopalakrishnan, V., Lacomis, D., Urbinelli, L., Newhall, K., Cudkowicz, M.E., Brown Jr., R.H., Bowser, R.: Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J. Neurochem. 95(5), 1461–1471 (2005)

    Article  Google Scholar 

  12. Frank, E., Hall, M., Trigg, L., Holmes, G., Witten, I.H.: Data mining in bioinformatics using Weka. Bioinformatics 20(15), 2479–2481 (2004)

    Article  Google Scholar 

  13. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  14. Clearwater, S., Provost, F.: RL4: A Tool for Knowledge-Based Induction. In: Proceedings of the Second International IEEE Conference on Tools for Artificial Intelligence (TAI 1990) (1990)

    Google Scholar 

  15. Feigenbaum, E.A., Buchanan, B.G.: Dendral and Meta-Dendral - Roots of Knowledge Systems and Expert System Applications. Artif. Intell. 59(1-2), 223–240 (1993)

    Article  Google Scholar 

  16. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Machine Learning 42, 203–231 (2001)

    Article  MATH  Google Scholar 

  17. Mitchell, T.: The need for biases in learning generalizations. In: Dietterich, T.G., Shavlik, J. (eds.) Readings in Machine Learning. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  18. Provost, F., Buchanan, B.G.: Inductive policy: the pragmatics of bias selection. Machine Learning 20, 35–61 (1995)

    Google Scholar 

  19. Gopalakrishnan, V., Williams, E., Ranganathan, S., Bowser, R., Cudkowic, M.E., Novelli, M., Lattanzi, W., Ganbotto, A., Day, B.W.: Proteomic Data Mining Challenges in Identification of Disease-Specific Biomarkers from Variable Resolution Mass Spectra. In: Proceedings of SIAM Bioinformatics Workshop 2004. Society of Industrial and Applied Mathematics International Conference on Data Mining, April 2004, pp. 1–10 (2004)

    Google Scholar 

  20. Liu, H., Li, J., Wong, L.: A Comparative Study on Feature Selection and Classification methods Using Gene Expression Profiles and Proteomic Patterns. Genome Informatics 13, 51–60 (2002)

    Google Scholar 

  21. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopalakrishnan, V., Ganchev, P., Ranganathan, S., Bowser, R. (2006). Rule Learning for Disease-Specific Biomarker Discovery from Clinical Proteomic Mass Spectra. In: Li, J., Yang, Q., Tan, AH. (eds) Data Mining for Biomedical Applications. BioDM 2006. Lecture Notes in Computer Science(), vol 3916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11691730_10

Download citation

  • DOI: https://doi.org/10.1007/11691730_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33104-9

  • Online ISBN: 978-3-540-33105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics