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Abstract. Confidentiality of certain parameters is an essential security
requirement for many security sensitive applications. In this paper, con-
ditions for abstractions are formulated in terms of formal language theory
to be able to prove parameter confidentiality in an abstract view of a sys-
tem and then conclude that an adequate representation of the property
is satisfied in the refined system as well. These conditions essentially de-
pend on an agent’s view as well as on an agent’s initial knowledge of the
system behaviour, which explicitely formalizes assumptions about the
system.

1 Introduction

Typically, the well-known concepts of non-interference or information flow con-
trol address confidentiality of actions: the occurrence or non-occurrence of certain
actions of an agent shall not be deducible for another agent based on what it
observes. In the literature there is a variety of formalizations of this concept,
Mantel [11] gives a good insight into this topic. The subtle differences between
these definitions show the spectrum of this kind of confidentiality.

However, non-interference is not suitable for the specification of security re-
quirements in distributed open systems. Here, it can be assumed that all actions
concerned with communication might indeed be visible to malicious agents. Nev-
ertheless, confidentiality is required for data transmitted using these actions. An
adequate notion of confidentiality therefore has to provide the flexibility to define
confidentiality for arbitrary parameters of the actions. The notion of parameter-
confidentiality presented in [6] provides this flexibility. Parameter confidentiality
formalizes the following property: An agent R that monitors a sequence of actions
ω of a system S cannot determine the value of a certain parameter (a certain part
of the message, the agent performing the action, etc.) of a specific action or set
of actions of the sequence, even if it knows the set of possible parameter values.

It is well known that security of a system is not an add on but must be con-
sidered during the whole design process from abstract requirement specifications
to a concrete realization of the system. To efficiently employ the notion of para-
meter confidentiality it is therefore necessary to be able to prove satisfaction of
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this property in an abstract view of a system and then conclude that an adequate
representation of the property is satisfied in the refined system as well. Using
our formal framework for security properties [7] in terms of formal languages
and language homomorphisms, this paper gives sufficient conditions for such a
top down design and explains by a characteristic example its functionality.

Only a few papers discuss confidentiality in combination with refinement.
[9] considers degrees of confidentiality and shows that degrees of functionality
and confidentiality are inversely related w.r.t. refinement. [12] shows how re-
finement can be modified to preserve flow properties. [10] gives conditions for
certain refinement operators on stream functions to preserve a kind of explicit
confidentiality which does not capture implicit information flow. [8] identifies
confidentiality preserving refinements in a probabilistic setting.

Another aspect to be taken into consideration is that security properties can
only be satisfied relative to particular sets of underlying system assumptions. Ex-
amples include assumptions on cryptographic algorithms, secure storage, trust
in the correct behaviour of agents or reliable data transfer. Relatively small
changes in these assumptions can result in huge differences concerning satisfac-
tion of security properties. Every model for secure systems must address these
issues. However, most existing models rely on a fixed set of underlying assump-
tions (see for example [3] and [13]). These assumptions are often implicitly given
by particular properties of the model framework. Thus, it is very hard to verify
whether a particular implementation actually satisfies all of these assumptions.
Further, imprecise security assumptions might result in correct but useless secu-
rity proofs and finally in insecure implementations. Therefore, a model for secure
systems needs to provide the means to accurately specify underlying system as-
sumptions in a flexible way.

In order to provide the required flexibility, we extend the system specification
by two components: agents’ knowledge about the global system behaviour and
agents’ view. The knowledge about the system consists of all traces that an
agent initially considers possible, i.e. all traces that do not violate any of its
assumptions about the system, and the view of an agent specifies which parts of
the system behaviour the agent can actually see.

The main result of this paper shows that preserving parameter confidential-
ity under refinement essentially depends on agents’ view as well as on agents’
knowledge. The effect of agents’ view is also considered in [9] and in [8] whereas
agents’ knowledge is ignored by all papers mentioned above.

In Section 2 the formalization background is introduced. Section 3 recapit-
ulates the definition of parameter confidentiality from [6]. Sufficient conditions
for abstractions preserving parameter confidentiality are given in Section 4 and
are discussed by examples in Sections 5 and 6.

2 System Behaviour and Abstractions

In this section we first give a short summary of the necessary concepts of formal
languages to describe system behaviour and abstractions.
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The behaviour S of a discrete system can be formally described by the set
of its possible sequences of actions (traces). Therefore S ⊆ Σ∗ holds where Σ
is the set of all actions of the system, and Σ∗ is the set of all finite sequences
of elements of Σ, including the empty sequence denoted by ε. This terminology
originates from the theory of formal languages [5], where Σ is called the alphabet
(not necessarily finite), the elements of Σ are called letters, the elements of Σ∗

are referred to as words and the subsets of Σ∗ as formal languages. Words can
be composed: if u and v are words, then uv is also a word. This operation is
called concatenation; especially εu = uε = u. A word u is called a prefix of a
word v if there is a word x such that v = ux. The set of all prefixes of a word u
is denoted by pre(u); ε ∈ pre(u) holds for every word u.

Formal languages which describe system behaviour have the characteristic
that pre(u) ⊆ S holds for every word u ∈ S. Such languages are called prefix
closed. System behaviour is thus described by prefix closed formal languages. La-
beled transition systems are uniquely determined by their sets of labeled paths,
which are prefix closed languages. So our method will apply to specifications
with an interleaving semantics based on labeled transition systems, as for exam-
ple any kind of communicating automata.

Different formal models of the same application/system are partially ordered
with respect to different levels of abstraction. Formally, abstractions are de-
scribed by so called alphabetic language homomorphisms. These are mappings
h∗ : Σ∗ −→ Σ′∗ with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ) ⊆ Σ′ ∪ {ε}
which implies h∗(S) ⊆ (Σ′)∗. So they are uniquely defined by corresponding
mappings h : Σ −→ Σ′ ∪ {ε}. In the following we denote both the mapping h
and the homomorphism h∗ by h.

The Example. In order to illustrate our approach using an example as simple
as possible, in the following we introduce an artificial price offer–order example
(which is not supposed to represent appropriate security requirements for any
realistic application). In the project CASENET [2,4] funded by the European
Commission our approach was successfully applied to real life e-government and
e-business applications.

The scenario for the example system consists of a set of two users U = {U, V }
and a set of two service providers S = {S, T }. The following actions can occur
in the example system: a service provider sends a price offer for a certain service
to a particular user, which is then received by the user. Subsequently, the user
can place an order which is in turn received by the service provider. The price is
assumed to be the critical parameter to remain confidential. For simplicity, we
assume that only two prices are possible. Therefore, the set of prices is M =
{cheap, exp}. For user USER ∈ U , service provider SP ∈ S and price ∈ M , the
actions of the system are send-offer(SP,USER,price),rec-offer(USER,SP,price),
send-order(USER,SP,price) and rec-order(SP,USER,price). The first parameter
denotes the agent executing the particular action, the second parameter the
agent the action is associated with. Note that throughout the paper we denote
sets, homomorphisms etc. that belong to our example by expressions in bold
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face. Thus Σ denotes the set of all possible actions of the example, while Σ
indicates an arbitrary alphabet.

We will now define an abstraction of this system. Here we consider the same
sets of agents and prices, but a reduced set of possible actions.

Σ′ =
⋃

USER∈U
SP∈S,price∈M

{send-offer(SP, USER, price), rec-offer(USER, SP, price)}

The language homomorphism h : Σ∗ −→ Σ′∗ simply removes all actions for
sending and receiving orders:

Let Σ′ and Σ be as defined above. Then we define a homomorphism h :
Σ∗ −→ Σ′∗ by

h(a) =
{

a if a ∈ Σ′

ε else

Figure 1 illustrates the effect of applying h to one particular sequence in Σ∗.

ε
homomorphism h
Language

send−offer(S,U,exp)

send−order(U,T,cheap) send−offer(S,U,exp)rec−offer(U,T,cheap)

rec−offer(U,T,cheap)send−offer(T,U,cheap)

send−offer(T,U,cheap)Refined system

Abstract system

Fig. 1. Application of h to a specific sequence in Σ∗

In the remaining sections of the paper we will formally define confidentiality
of the price in the abstract system and then show that this property is satisfied
in the abstract system and that h preserves this property. Thus, we are able
to conclude that confidentiality of the price is satisfied in the more complex
(refined) system as well.

3 Parameter Confidentiality

This section gives a brief introduction to parameter confidentiality as introduced
in [6].

3.1 Agents’ View and Knowledge About the Global System
Behaviour

We will now explain in more detail our approach to specify agents’ view and
knowledge about the system and their relations. The specification of the desired
system behaviour generally does not include behaviour of malicious agents which
has to be taken into account in open systems. An approach which is frequently
used for the security analysis of cryptographic protocols is to extend the system
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specification by explicit specification of malicious behaviour. However, in gen-
eral malicious behaviour is not previously known and one may not be able to
adequately specify all possible actions of dishonest agents. In our approach, the
explicit specification of agents’ knowledge about system and environment allows
to discard explicit specification of malicious behaviour. Every behaviour which
is not explicitly excluded by some WP is allowed.

We consider all agents’ knowledge sets to be part of the system specification.
As explained in the introduction, agent P ’s knowledge WP ⊆ Σ∗ about the
global system behaviour contains all traces that P assumes to be possible. We
may assume for example that a message that was received must have been sent
before. Thus an agent’s WP will contain only those sequences of actions in which
a message is first sent and then received.

Care must be taken when specifying the sets WP for all agents P in order not
to specify properties that are not guaranteed by verified system assumptions. In a
setting for example where we assume one time passwords are used, if P trusts Q,
WP contains only those sequences of actions in which Q sends a certain password
only once. However, if Q cannot be trusted, WP will also contain sequences of
actions in which Q sends a password more than once.

Denoting a system containing malicious behaviour by S and the correct sys-
tem behaviour by SC , we assume SC ⊆ S ⊆ Σ∗. We further assume S ⊆ WP , i.e.
every agent considers the system behaviour to be possible. Security properties
can now be defined relative to WP .

The set WP describes what P knows initially. However, in a running system
P can learn from actions that have occurred. Satisfaction of security properties
obviously also depends on what agents are able to learn. After a sequence of
actions ω ∈ S has happened, every agent can use its local view of ω to determine
the sequences of actions it considers to be possible. In order to determine what is
the local view of an agent, we first assign every action to exactly one agent. Thus
Σ =

⋃̇
P∈PΣ/P (where P denotes the set of all agents, Σ/P denotes all actions

performed by agent P , and
⋃̇

denotes the disjoint union). The homomorphism
πP : Σ∗ → Σ∗

/P defined by πP (x) = x if x ∈ Σ/P and πP (x) = ε if x ∈ Σ \Σ/P

formalizes the assignment of actions to agents and is called the projection on P .
The projection πP is the correct representation of P ’s view of the system

if all information about an action x ∈ Σ/P is available for agent P and P can
only see its own actions. In this case P ’s local view of the sequence of actions
send-offer(P,Q,price) rec-offer(Q,P,price) for example is send-offer(P,Q,price).
However, P ’s view may be finer. For example it may additionally note other
agents’ actions without seeing the messages sent and received, respectively. In
this case, P ’s local view of ω will be equal to send-offer(P,Q,price) rec-offer(Q).
P ’s local view may also be coarser than πP . In a system the actions of which
are represented by a triple (global state, transition label, global successor state),
although seeing its own actions, P will not be able to see the other agents’ state.
Thus, we generally denote the local view of an agent P on Σ by λP .

For a sequence of actions ω ∈ S and agent P ∈ P, λ−1
P (λP (ω)) ⊆ Σ∗ is

the set of all sequences that look exactly the same from P ’s local view after
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ω has happened. Depending on its knowledge about the system S, underly-
ing security mechanisms and system assumptions, P does not consider all se-
quences in λ−1

P (λP (ω)) possible. Thus it can use its knowledge to reduce this
set: λ−1

P (λP (ω)) ∩ WP describes all sequences of actions P considers to be pos-
sible when ω has happened. As this set is frequently used in this paper, we
introduce the following abbreviation: ΛP (ω, WP ) = λ−1

P (λP (ω)) ∩ WP .
The set ΛP (ω, WP ) is similar to the possible worlds semantics that have been

defined for authentication logics in the context of cryptographic protocols [1,14].
Our notion is more general because for authentication logics λP and WP are
fixed for all systems, whereas in our approach they can be defined differently for
different systems.

Our approach to define agents’ local view and system knowledge is the basis
for the framework of security requirements introduced in [7].

Our Example. We now define local view and knowledge about the system for
agents of the abstract version of the example system introduced in Section 2.
We assume that each user and service provider can only see its own actions.

For every agent P ∈ U ∪S we define a homomorphism λ′
P : Σ′∗ −→ Σ′∗ by

λ′
P (a) =

{
a if a ∈ Σ′

/P

ε else

We further assume that the knowledge sets W ′
P of the agents P ∈ U∪S in the

abstract system are only restricted by an assumption about the communication:
No agent considers a sequence of actions possible in which an offer is received
without having been sent. Thus, we have the following knowledge sets for P ∈
U ∪ S:

W ′
P = Σ ′∗\�

USER∈U,SP∈S
price∈M

(Σ ′\{send-offer (SP, USER, price)})∗{rec-offer (USER, SP, price)}Σ ′∗

W ′
P does not contain sequences of actions that start with a sequence without

an action send-offer(SP, USER, price), continues with action rec-offer(USER,
SP, price), and finally ends with any sequence of actions in Σ∗.

Based on these knowledge sets, the system behaviour of the abstract system
can now be defined as S′ =

⋂
P∈U∪S W ′

P = W ′
P for all P ∈ U ∪ S.

In the remainder of the paper, primed notation denotes expressions associ-
ated with the abstract system. Corresponding expressions for the refined system
appear unprimed.

3.2 Formalizing Parameter Confidentiality

For the example system, we want to specify the property that the price offered
to U is confidential from V’s perspective. Various aspects are included in our
definition. First, we have to consider an agent’s local view and its knowledge
about the system, as explained in Section 3.1. Then we need to identify the
actions in which the price shall be confidential. In our example, only the actions
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where a price is sent to and received by U are of interest. Thus, we disregard all
other actions, i.e. we map them with a suitably chosen homomorphism µ onto the
empty word. From those actions not mapped onto ε, µ extracts the parameter
to be confidential that occurs in the action and associates it with the “type” of
the action. The type consists of the name of the action and all parameters that
are not required to be confidential.

Hence µ(ΛR(ω, WR)) is a set of sequences of types of those actions that are
of interest with respect to parameter confidentiality, paired with the respective
parameter values being possible from R’s local view.

If Σt denotes a set of types of parameter occurrences and M denotes a set
of parameter values then homomorphism µΣt,M : Σ∗ → (Σt × M)∗ can be used
to identify the parameters that shall be confidential. For simplicity we write µ
if the related parameter set and the types are obvious.

Our Example. For SP ∈ S and price ∈ M , the homomorphism µ′ for the
abstract example system can be defined as follows:

µ′(send-offer(SP, V, price)) = ε
µ′(rec-offer (V, SP, price)) = ε
µ′(send-offer(SP, U, price)) = (send-offer(SP, U), price)
µ′(rec-offer (U, SP, price)) = (rec-offer (U, SP ), price)

This homomorphism µ′ extracts the parameter price from all send-offer ac-
tions for and rec-offer actions by user U , respectively. Consequently, the type
set for the example is given as Σt = {send-offer(SP, U), rec-offer(U, SP )}.

Our aim is now to formalize that µ′(Λ′
V (ω, W ′

V )) contains all possible pa-
rameter values. What are the possible combinations of parameters is the last
aspect that needs to be specified. In general it is obviously sufficient if all com-
binations of parameters are possible. However, in many cases interdependencies
between different actions are publicly known and consequently, such a strong
requirement would be impossible to be satisfied. In these cases it is reasonable
to restrict the combinations of parameters. In our example we assume reliable
transmission of messages and therefore rec-offer(USER, SP, price) can only oc-
cur if send-offer(SP, USER, price) has happened before.

The following language K ⊆ (Σt ×M)∗ expresses the different combinations
of parameter values regarding offers sent to and received by U which are possible
in the example system.

K = (Σt × M)∗\⋃

SP∈S
price∈M

[((Σt × M) \ {(send-offer(SP, U), price)})∗

{(rec-offer(U, SP ), price)}(Σt × M)∗]
Using the homomorphism pt : (Σt×M)∗ → Σ∗

t that denotes the projection
on the types, the following definition expresses parameter confidentiality with
respect to a particular µ and K.

Definition 1. [6] Let M be a parameter set, Σ a set of actions, Σt a set of types,
µ : Σ∗ → (Σt × M)∗ a homomorphism, and K ⊆ (Σt × M)∗ with K ⊇ µ(WR).
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Then M is parameter confidential for agent R ∈ P with respect to µ and K if
for each ω ∈ S

µ(ΛR(ω, WR)) = p−1
t (pt(µ(ΛR(ω, WR)))) ∩ K

The left hand side of the above equation consists of the µ-image of the set of
sequences of actions agent R considers possible after having monitored ω, while
the right hand side contains all possible combinations of parameters by applying
pt and then p−1

t . Again, the intersection with K removes all sequences of actions
from this set R is not required to consider possible because of information on
the system it is allowed to know.

In order to provide a reasonable confidentiality property, the occurrence of
parameters in K cannot be too restricted. In most cases it is reasonable to require
that apart from interdependencies between actions that are allowed to be known
by all agents, all parameter values are possible for each action. This property of
K is expressed by the so-called (L,M)-completeness of K as described in [6] and
obviously holds for the above defined K.

We can now show that in our abstract example system, agent V does not
know more than it is allowed to know about occurrences of parameters in M
when monitoring sequences of actions.

Proposition 1. The set M is parameter confidential for V with respect to µ′

and K.

Proof: We show by contradiction that for all ω ∈ S′ holds
µ′(Λ′

V (ω, W ′
V ) ⊇ p−1

t (pt(µ′(Λ′
V (ω, W ′

V )))) ∩ K:
Assume we have ω ∈ S such that there exists x ∈ p−1

t (pt(µ′(Λ′
V (ω, W ′

V ))))∩K
with x �∈ µ′(Λ′

V (ω, W ′
V ). Then there exists ω1 ∈ Λ′

V (ω, W ′
V ) with pt(µ′(ω1)) =

pt(x) but µ′(ω1) �= x.
Further there exists ω2 �∈ Λ′

V (ω, W ′
V ) with µ′ω2 ∈ K, µ′(ω2) = x and ω2 ∈

µ′−1
ID(µ′

ID(ω1)), where the mapping µ′
ID : Σ′∗ −→ (Σ′ ∪ Σt)∗ is defined by

µ′
ID(a) =

{
a if µ′(a) = ε
p1(µ′(a)) else

Sequence ω2 equals ω1 except for those parameter values that are extracted by
µ′. Such an ω2 exists, because according to the assumption there have to be
combinations of parameter values that do not occur in Λ′

V (ω, W ′
V ).

For all δ ∈ Σ′∗ holds µ′(λ′
V (δ)) = ε, i.e. every action that can be seen by

V is mapped to ε by µ′. Therefore, with ω2 ∈ µ′
ID

−1(µ′
ID(ω1)) and ω1 ∈

(λ′
V )−1(λ′

V (ω)) follows ω2 ∈ (λ′
V )−1(λ′

V (ω)). As ω2 �∈ Λ′
V (ω, W ′

V ) it follows
that ω2 �∈ W ′

V . This means that in ω2 there exists a rec-offer action by user U
without a preceeding send-offer. This is in contradiction to µ′(ω2) ∈ K. �

4 Preserving Parameter Confidentiality

This section explains how we conclude from the proof of parameter confiden-
tiality of an abstract view of a system that an adequate representation of the
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property is satisfied in the refined system as well, and constitutes the main con-
tribution of this paper.

For simplicity, we assume that for a system S ⊆ Σ∗ and homomorphism
µ′ on Σ′∗ ⊇ h(S), the property for the concrete system is defined using the
homomorphism µ = µ′ ◦ h (where f ◦ g denotes the composition of functions f
and g). Then the same language K can be used on both levels of abstraction
to express the combinations of action types and parameter values. Definition 2
below can be easily transferred to the more general case with different type
sets and different homomorphisms. However, the extended definition is more
technical while the simplified version is suitable for many realistic scenarios.

Preservation of parameter confidentiality by a homomorphism h is concerned
with the parameter values considered possible on the different levels of abstrac-
tion. It therefore depends on the local views λR and λ′

R as well as on the relation
between the knowledge sets WR and W ′

R. These relations between the different
levels of abstraction are shown in Figure 2.

additional knowledge in the
concrete system expressed by Aω

of parameter confidentiality
conditions for preservation

concrete
system

abstract
system h(ω) ∈ h(S)

system
behaviour

ω ∈ S

possible by R
sequences considered

Λ′
R(h(ω), W ′

R)

parameter values considered
possible by R

ΛR(ω, WR) µ[ΛR(ω, WR)]

µ′[Λ′
R(h(ω), W ′

R)]

Fig. 2. Preserving parameter confidentiality

Definition 2 formulates a condition on language homomorphisms. We will
show that homomorphisms satisfying this condition preserve parameter confi-
dentiality, i.e. that if parameter confidentiality is satisfied in the homomorphic
image of a system it is satisfied in the system as well.

Definition 2. Let h : Σ∗ −→ Σ′∗ and µ : Σ∗ → (Σt × M)∗ be language
homomorphisms, S ⊆ Σ∗, R ∈ P, and λ′

R the local view of agent R in Σ′∗. Then
we call the homomorphism h parameter confidential for R with respect to µ if
for all ω ∈ S there exists Aω ⊆ Σ∗

t such that the following holds:

µ[ΛR(ω, WR)] = µ′[Λ′
R(h(ω), h(WR))] ∩ p−1

t (Aω)

So a parameter confidential homomorphism guarantees that the sequences of
actions R considers possible after having monitored ω in S correspond to those
R considers possible after having monitored h(ω) in S′. The definition takes into
account that usually agents will be allowed to learn additional information in
the refined system about the type of actions that have occurred. This additional
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knowledge is expressed by the set Aω ⊆ Σ∗
t . Applying p−1

t adds all parameter
values in M. Therefore, intersection with p−1

t (Aω) expresses that agents cannot
gain any additional information on parameter values. In the case that agents
do not learn any new information about action types, we simply have Aω = Σ∗

t

which leads to the much simpler condition µ[ΛR(ω, WR)] = µ′[Λ′
R(h(ω), h(WR))].

The next lemma states that if X ⊆ (Σt ×M)∗ is parameter confidential, then
the intersection with a set in (Σt ×M)∗ containing all possible parameter values
is also parameter confidential.

Lemma 1. Let X, K ⊆ (Σt × M)∗ and A ⊆ Σ∗
t . Then X = p−1

t (pt(X)) ∩ K
implies X ∩ p−1

t (A) = p−1
t (pt[X ∩ p−1

t (A)]) ∩ K.

Proof: With Lemma A.1, p−1
t (pt[X ∩ p−1

t (A)]) ∩ K = p−1
t (pt(X) ∩ A) ∩ K.

According to the remark to Lemma A.1, this is equal to p−1
t (pt(X))∩p−1

t (A)∩K,
which by assumption is equal to X ∩ p−1

t (A). �

In Theorem 1 we now show that parameter confidential homomorphisms
indeed preserve parameter confidentiality as defined in Definition 1.

Theorem 1. Let S′ ⊆ Σ′∗ be parameter confidential for agent R ∈ P with re-
spect to some µ′ and K. Let furthermore S ⊆ Σ∗ and homomorphism h : Σ∗ −→
Σ′∗ such that h(S) ⊆ S′ and h(WR) = W ′

R. If h is parameter confidential with re-
spect to R, then S is parameter confidential for R with respect to µ = µ′◦h and K.

Proof: S′ being parameter confidential with h(S) ⊆ S′ and h(WR) = W ′
R im-

plies that µ′[ΛR(h(ω), h(WR))] = p−1
t (pt [ΛR(h(ω), h(WR))])∩K. From applying

Lemma 1 with X = µ′[ΛR(h(ω), h(WR))] we conclude µ′[ΛR(h(ω), h(WR))] ∩
p−1

t (Aω) = p−1
t (pt{µ′[Λ′

R(h(ω), h(WR))] ∩ p−1
t (Aω)}) ∩ K which is equal to

p−1
t (pt(µ[ΛR(ω, WR)])) ∩ K, because according to the assumption h is parame-

ter confidential. �

We now introduce a property that is sufficient for a homomorphism to be
parameter confidential. In contrast to Definition 2 here we directly compare the
image under homomorphism h of what R can learn from ω in the refined system
S with what R can learn from the image of ω in the abstract system S′ (again
taking into account what R is allowed to learn). This can result in easier proofs
in some cases.

Theorem 2. Let h : Σ∗ −→ Σ′∗ be a language homomorphism, S ⊆ Σ∗, R ∈ P,
and let ψ′ = pt ◦ µ′. h is parameter confidential for R with respect to µ if for all
ω ∈ S there exists Aω ⊆ Σ∗

t such that

h[ΛR(ω, WR)] = [Λ′
R(h(ω), h(WR)] ∩ ψ′−1(Aω).

Proof: Since µ = µ′◦h, we have µ[ΛR(ω, WR)] = µ′[h(ΛR(ω, WR))]. By assump-
tion, this is equal to µ′[Λ′

R(h(ω), h(WR)) ∩ ψ′−1(Aω)]. This in turn is equal to
µ′[Λ′

R(h(ω), h(WR))∩µ′−1(p−1
t (Aω))] because ψ′ = pt ◦µ′, and with Lemma A.1

follows equality with µ′[Λ′
R(h(ω), h(WR))] ∩ p−1

t (Aω). �
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Note that in the case where agents do not learn additional information in
the refined system, the sufficient condition of Theorem 2 for homomorphism h
for being parameter confidential reduces to

h[ΛR(ω, WR)] = [Λ′
R(h(ω), h(WR)],

i.e. Aω is equal to Σ∗
t .

For designing a system using various steps of refinement a natural require-
ment is that the composition of parameter confidential homomorphisms is again
parameter confidential.

Theorem 3. Let h : Σ∗ −→ Σ′∗ and g : Σ′∗ −→ Σ′′∗ be homomorphisms
parameter confidential for R ∈ P with respect to µ and µ′, respectively, and let
µ′′ = µ′ ◦ g. Then g ◦ h is also parameter confidential for R with respect to µ.

Proof: Let λR, λ′
R, and λ′′

R be the local views of agent R in Σ, Σ′, and
Σ′′, respectively. Since h is parameter confidential, µ[ΛR(ω, WR)] = µ′[Λ′

R(h(ω),
h(WR))] ∩ p−1

t (Aω). This is equal to µ′′[Λ
′′

R(g(h(ω)), g(h(WR)))] ∩ p−1
t (A′

h(ω) ∩
p−1

t (Aω) because of parameter confidentiality of g. Equality to µ′′[Λ
′′

R(g(h(ω)),
g(h(WR)))] ∩ p−1

t (A′
h(ω) ∩ Aω) follows with the remark to Lemma A.1). �

We can now introduce a theorem which is the key for proving parameter
confidentiality of a refined system based on parameter confidentiality of an ab-
straction. The theorem uses a couple of conditions that, though very technical,
address quite natural conditions on compatibility of homomorphism and local
views in the refined and the abstract system. The theorem refers to the case
where an agent does not learn additional information about actions in the re-
fined system (see note of Theorem 2). It essentially states that in this case the
homomorphism is parameter confidential if the initial knowledge WR of agent R
in the refined system is just the inverse of what R knows in the abstract system.

Theorem 4. Let h : Σ∗→Σ′∗ be an alphabetic language homomorphism, h sur-
jective, and for R ∈ P let λR and λ′

R be the homomorphisms describing the local
views of R on Σ and Σ′, respectively. Let furthermore h′

R : λR(S) → λ′
R(S′) a

mapping on S with λ′
R ◦ h = h′

R ◦λR. Let additionally the following conditions
hold:

1. For all t′∈Σ′ with λ′
R(t′)=ε there exists t∈Σ with λR(t)=ε and h(t)= t′.

2. For all a ∈ Σ with λ′
R(h(a)) �= ε and for all t′ ∈ Σ′ with λ′

R(t′) = λ′
R(h(a))

there exists t ∈ Σ with λR(t) = λR(a) and h(t) = t′.
3. For all a ∈ Σ with h(a) �= ε and λ′

R(h(a)) = ε holds λR(a) = ε.

Then h[ΛR(ω, h−1(W ′
R))] = Λ′

R(h(ω), W ′
R).

For the (very technical) proof of this theorem we refer the reader to the
appendix.
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5 Parameter Confidentiality of the Refined Example
System

We now consider the refined system as defined in Section 2, which contains
an additional set of actions for sending and receiving orders. In Section 3 we
have shown that parameter confidentiality of the price offered to U is satisfied
in the abstract system. We will now show that this property is preserved by
homomorphism h and is therefore satisfied in the refined system as well.

The knowledge sets WP of the agents P ∈ P in the refined system are
analogous to those in the abstract system: No agent considers a sequence of
actions possible in which an offer and an order, respectively, is received without
having been sent before. However, the particular user V knows more about the
system. It knows that user U only orders the cheap price, and that he orders
only after having received an offer. This additional knowledge is formalized in
W 2

V below.
The knowledge sets for agents P ∈ {U, S, T } for the refined system S are

defined as follows:
WP = h−1(W ′

P ) ∩ W 1
P

where
W 1

P = Σ∗\�

USER∈U,SP∈S
price∈M

(Σ\{send-order (USER, SP, price)})∗{rec-order (SP, USER, price)}Σ∗

The knowledge set for agent V for the refined system S with its additional
restrictions is defined as follows: WV = h−1(W ′

V ) ∩ W 1
V ∩ W 2

V

where W 1
V = W 1

P and

W 2
V = (Σ \

�

SP∈S
{send-order (U, SP, exp)})∗\

�

SP∈S
(Σ \ {rec-offer (U, SP, cheap)})∗{send-order (U, SP, cheap)}Σ∗

The refined system S ⊆ Σ in our example is given as the intersection of all

knowledge sets:
S =

⋂

P∈P

WP (Σ)

We will show that, although V knows more about the concrete system than
it knows about the abstract one, with respect to the homomorphism h the two
sets are identical. This allows us to make use of Theorem 4.

For specifying parameter confidentiality in S, we need to define the local
view of V and the type of action(s) we are interested in. The local views of the
refined system are analogous to those of the abstract system, i.e. each agent sees
its own actions and does not see any (part of) actions of other agents.

The local view λV : Σ −→ ΣV of agent V is defined as follows:

λV (a) =
{

a if a ∈ Σ/V

ε else
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In the refined system we are again interested in the confidentiality of the price
offered to user U, i.e. on both abstraction levels we focus on the same type of
actions with respect to parameter confidentiality:

The function µ that extracts action type and parameter is given by µ = µ′◦h,
i.e.

µ(send-offer(SP, V, price)) = ε
µ(send-offer(SP, U, price)) = (send-offer(SP, U), price)
µ(rec-offer(V, SP, price)) = ε
µ(rec-offer(U, SP, price)) = (rec-offer(U, SP ), price)
µ(send-order (USER, SP, price)) = ε
µ(rec-order(SP, USER, price)) = ε

Proposition 2. M is parameter confidential for V with respect to µ and K.

Proof:
We will show that Proposition 2 holds by applying Theorem 1. Thus we have

to show that all conditions of Theorem 1 hold, i.e. that

(i) h(S) ⊆ S′ (i.e. S′ is indeed an abstract view of S),
(ii) h(WV ) = W ′

V (i.e. knowledge sets in the refined and the abstract system
are consistent),

(iii) and homomorphism h : Σ −→ Σ′∗ is parameter confidential for V with
respect to µ.

Lemma 2. h(S) ⊆ S′, i.e for all ω ∈ S holds h(ω) ∈ S′.

Proof: We show the lemma by induction over the length of ω ∈ S.

Induction basis: Let ω = ε. Then h(ω) = ε ∈ S′.
Induction hypothesis: For ω0 ∈ S holds h(ω0) ∈ S′.
Induction step: Let us consider ω = ω0a.

1. h(a) = ε. Then h(ω) = h(ω0)h(a) = h(ω0) ∈ S′.
2. h(a) �= ε,a = send-offer(SP, USER, price) for USER ∈ U , SP ∈ S,

and price ∈ M .
Then h(ω0) ∈ S′ implies h(ω0a) = h(ω0)a ∈ S′.

3. h(a) �= ε,a = rec-offer(USER, SP, price) for USER ∈ U , SP ∈ S, and
price ∈ M .
Then ω0a ∈ S implies ω0 ∈ Σ∗send-offer(USER, SP, price)Σ∗.
It follows that h(ω0) ∈ Σ′∗send-offer(USER, SP, price)Σ′∗

and therefore h(ω0a) = h(ω0)h(a) = h(ω0)a ∈ S′. �

For the remaining items (ii) and (iii) we first prove a preliminary considera-
tion concerning the fact that in our particular example the additional restrictions
on V ’s knowledge of the system S have no influence on the image under h. This
is formulated in the next lemma.

Lemma 3. For all u ∈ h−1(W ′
V ) there exists v ∈ h−1(W ′

V )∩W 1
V ∩W 2

V such
that h(u) = h(v).
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Proof: The lemma holds trivially for u ∈ h−1(W ′
V ) ∩ W 1

V ∩ W 2
V . Thus let

u ∈ h−1(W ′
V )\(W 1

V ∩W 2
V ), i.e. u ∈ h−1(W ′

V )\W 1
V ∪h−1(W ′

V )\W 2
V . Then

u = u1 . . . ul contains

1. actions ui1 , . . . , uir with uix ∈ {rec-order(SP, USER, price) | SP ∈ S,
USER ∈ U , price ∈ M} without the respective action send-order(USER,
SP, price) before, or

2. actions uj1 , . . . , ujs with ujy ∈ {send-order (U, SP, exp) | SP ∈ S}, or
3. actions uk1 , . . . , ukt with ukz ∈ {send-order (U, SP, cheap) | SP ∈ S} with-

out the respective action rec-offer (U, SP, cheap) before.

We define v := f(u) where

f(ui) =
{

ε if ui ∈ {ui1 , . . . , uir , uj1 , . . . , ujs , uk1 , . . . , ukt}
ui else

Since f maps all actions that can cause u not to be element of W 1
V ∩

W 2
V onto ε, v = f(u) ∈ W 1

V ∩ W 2
V . Since u ∈ h−1(W ′

V ) and h keeps all
actions send-offer(SP, USER, price) and rec-offer(USER, SP, price), u does
not contain actions rec-offer(USER, SP, price) without the respective action
send-offer(SP, USER, price) before. f keeps in particular all actions rec-offer
and send-offer , thus v = f(u) also contains no actions rec-offer without the re-
spective send-offer before, hence is element of h−1(W ′

V ), and therefore element
of h−1(W ′

V ) ∩ W 1
V ∩ W 2

V . �

Lemma 4. h(WV ) = W ′
V

Proof: h(WV )=h(h−1(W ′
V )∩W 1

V ∩W 2
V ). Lemma 3 together with Lemma A.2

yields h(WV ) = h(h−1(W ′
V )). Surjectivity of h implies h(h−1(W ′

V )) = W ′
V

and therefore, h(WV ) = W ′
V . �

Lemma 5. For all u ∈ λ−1
V (λV (ω)) there exists v ∈ λ−1

V (λV (ω))∩W 1
V ∩W 2

V

such that h(u) = h(v).

Proof: Again, the interesting case to show is u∈λ−1
V (λV (ω)) \ W 1

V ∩W 2
V . We

use the same function f to define v=f(u). With the same argument as above we
can deduce that v ∈ W 1

V ∩W 2
V . It remains to show that v∈λ−1

V (λV (ω)), which
follows from λV (v) = λV (ω). Since u ∈ λ−1

V (λV (ω)), λV (u) = λV (ω). Further-
more, for all actions a that are mapped by f onto ε holds λV (a)=ε (none of these
actions is performed by V ), hence λV ◦f =λV , thus λV (v)=λV (f(u))=λV (u)∈
λ−1

V (λV (ω)). Again we can conclude v ∈ λ−1
V (λV (ω))∩W 1

V ∩W 2
V . �

Finally we have to show that homomorphism h is parameter confidential
for V .

Lemma 6. h is parameter confidential for V with respect to µ.

Proof: According to Theorem 2, the assertion holds if there exists Aω such
that for all ω ∈ S, h(ΛV (ω, WV )) = [Λ′

V (h(ω), h(WV ))] ∩ ψ′−1(Aω). We
show that this equation holds for Aω = Σ∗

t , i.e. we show that
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h(ΛV (ω, WV )) = [Λ′
V (h(ω), h(WV ))] (1)

Lemma A.2 (see Appendix) states that f(X ∩ Y ) = f(X) if for all x ∈ X
there exists y ∈ X ∩Y such that f(x) = f(y). According to Lemma 5, this holds
for X = λ−1

V (λV (ω)) and Y = W 1
V ∩W 2

V . Since WV = h−1(W ′
V )∩W 1

V ∩W 2
V ,

this yields h(ΛV (ω, WV )) = h(ΛV (ω, h−1(W ′
V ))). Together with Lemma 4

we can reduce equation 1 to the case where V ’s knowledge about the system S
is just the inverse image of what it knows from Σ′. It remains to show

h(ΛV (ω, h−1(W ′
V ))) = Λ′

V (h(ω), W ′
V )

which holds by Theorem 4. Finally we have to show that our example satisfies
the respective properties. We do not provide formal proofs here as the assertions
are easy to see.

With h = h and hR = h, obviously λ′
R◦h = h◦λR. Furthermore, we need to

exclude some pathological cases concerning inconsistency between the homomor-
phism and the agents’ local views on both abstraction levels (see Lemma A.5).
The homomorphism h just maps part of the refined system S onto ε, the other
part of S forms S′. Of course this homomorphism is surjective. It is also con-
sistent with the agents’ local view, as λ′

R is simply λR restricted to the actions
in Σ′. For the same reason, pathological cases as described by the conditions of
Theorem 4 cannot occur. Hence the preconditions of Theorem A.4 are fulfilled
and the above equation holds.

Thus h is parameter confidential for V with respect to µ. �

This concludes the proof that M is parameter confidential for V with respect
to µ and K.

This proof seems to be rather complex for this artificial small example. How-
ever, the general structure of this proof applies to all examples where conditions
for Theorem 4 are satisfied. More complicated systems will only result in more
elaborate case differentiations.

6 A Different Refined System Not Parameter
Confidential

In order to give an impression why the condition in Definition 2 fails to hold for
a system not being parameter confidential, let us consider a system based on the
same set of actions Σ, the same set of agents, the same knowledge sets, etc., but
which has a slightly different local view of agent V . V sees all actions performed
by itself and additionally all types of actions performed by some other agent, i.e.
it sees who sends to whom which type of message, but it cannot see the actual
price used in the message. Although V never sees the price, in this example it
can deduce it from the observed behaviour combined with its knowledge about
the system. This example shows that often it is not sufficient to protect only
the transfer of confidential data. In order to achieve confidentiality the complete
system behaviour needs to be considered.

Let Σ, WP , S etc. be as defined in the previous sections. Then λ̃V : Σ −→
Σt ∪ Σ/V with
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λ̃V (a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a if a ∈ Σ/V

send-offer(SP, U) if a = send-offer(SP, U, price)
rec-offer(U, SP ) if a = rec-offer (U, SP, price)
send-order (U, SP ) if a = send-order (U, SP, price)
rec-order (SP, U) if a = rec-order (SP, U, price)

is the local view of agent V in S.

Proposition 3. M is not parameter confidential for V with respect to µ and
K if the local view of V is given by λ̃V .

Proof Sketch: We give a short proof sketch for the proposition. The complete
proof can be found in the appendix in Section A.2. In order to show that the
condition of Definition 2 does not hold we need to show that there exists ω ∈ S
containing an action send-offer(S,U,price) with price∈ {cheap, exp} where V
knows the value of the price. Indeed, such an ω exists because V knows (through
its knowledge set WV ) that U only orders the cheap price, and he sees that U
receives an offer by S and then orders, thus the price offered by S must be equal
to cheap.

7 Conclusions

In this paper we gave sufficient conditions to prove parameter confidentiality in
an abstract view of a system and then conclude that an adequate representation
of the property is satisfied in the refined system as well. The notion of parameter-
confidentiality was introduced in a preceding paper [6] to specify confidentiality
of certain parameters relative to an agent’s knowledge about the system, es-
pecially knowledge about dependencies between parameter values in different
actions.

As it was discussed in a typical example, the formulated conditions essentially
depend on an agent’s view as well as on an agent’s initial knowledge of the
systems behaviour, which explicitely formalizes assumptions about the system.

The universality of our formal definitions, based on formal languages and
language homomorphisms, allows to apply them to any specification language
with a semantics based on labeled transition systems.

The conditions introduced in this paper fit in our design method for security
sensitive systems, where security properties are specified independently from the
abstraction level. Suitable language homomorphisms map from lower to higher
levels of abstraction. Our design method was successfully applied in the project
CASENET funded by the European Commission (IST-2001-32446), where it was
used to develop real life applications with certain security properties.

References

1. M. Abadi and M.R Tuttle. A Semantics for a Logic of Authentication. In Tenth An-
nual ACM Symposium on Principles of Distributed Computing, Montreal, Canada,
pages 201–216, August 1991.



434 S. Gürgens, P. Ochsenschläger, and C. Rudolph
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A Appendix

A.1 Several Technical Lemmata and Proof of Theorem 4

For arbitrary sets X and Y and A, C ⊆ X , B, D ⊆ Y and a mapping f : X −→ Y
we always have the equality f−1(B) ∩ f−1(D) = f−1(B ∩ D), but only the
inclusion f(A∩C) ⊆ f(A)∩ f(C). However, for particular intersections we have
equality:

Lemma A.1. Let X, Y be arbitrary sets, f : X −→ Y a mapping, and A ⊆
X, B ⊆ Y . Then f(A ∩ f−1(B)) = f(A) ∩ B.

Proof: a ∈ f(A∩f−1(B)) is equivalent to the existence of b ∈ A with f(b) ∈ B
and a = f(b), which in turn is equivalent to a ∈ f(A) and a ∈ B. �

Lemma A.2. Let X, Y and Z be arbitrary sets, and f : X −→ Z a homo-
morphism. If for all x ∈ X there exists y ∈ X ∩ Y such that f(x) = f(y) then
f(X ∩ Y ) = f(X).
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Proof: Let a∈f(X). Then there exists b∈X with f(b)=a. With the assumption
if follows the existence of some c∈X∩Y with f(c)=f(b)=a. Thus a ∈ f(X∩Y ).
On the other hand, if a∈f(X∩Y ), then a ∈ f(X)∩f(Y ) ⊆ f(X), thus a∈f(X).

�

Lemma A.3. Let h : Σ∗ → Σ′∗ be an alphabetic language homomorphism and
for R ∈ P let λR and λ′

R be the homomorphisms describing the local views of
R on Σ a Σ′, respectively. If there exists a mapping h′

R : λR(S) → λ′
R(S′) with

λ′
R ◦ h = h′

R ◦ λR on S, then h(ΛR(ω, WR)) ⊆ ΛR(h(ω), h(WR))

Proof: x ∈ h(ΛR(ω, WR)) implies the existence of y ∈ WR such that x = h(y)
and λR(y) = λR(ω). This in turn implies that there exists y ∈ WR with x = h(y)
and hR(λR(y)) = hR(λR(ω)). It follows that there exists y ∈ WR with x = h(y)
and λ′

R(h(y)) = λ′
R(h(ω)) which finally implies that x ∈ ΛR(h(ω), h(WR)).

Lemma A.4. Let h, h′
R, λR and λ′

R be as defined above. If h is surjective, h(WR)
= W ′

R, and λ′
R ◦ h = h′

R ◦ λR, then h[ΛR(ω, h−1(W ′
R))] ⊆ Λ′

R(h(ω), W ′
R).

Proof: Replacing WR in h[ΛR(ω, WR)] ⊆ ΛR(h(ω), h(WR)) of Lemma A.3 by
h−1(W ′

R) yields h[ΛR(ω, h−1(W ′
R))] ⊆ Λ′

R(h(ω), h(h−1(W ′
R))). Since the surjec-

tivity of h implies h(h−1(W ′
R)) = W ′

R, it follows the assertion.

Lemma A.5. Let h, Σ, Σ∗, λR and λ′
R be as defined above. Let furthermore the

following conditions hold:

(1) For all t′ ∈ Σ′ with λ′
R(t′) = ε there exists t ∈ Σ with λR(t) = ε and

h(t) = t′.
(2) For all a ∈ Σ with λ′

R(h(a)) �= ε and for all t′ ∈ Σ′ with λ′
R(t′) = λ′

R(h(a))
there exists t ∈ Σ with λR(t) = λR(a) and h(t) = t′.

(3) For all a ∈ Σ with h(a) �= ε and λ′
R(h(a)) = ε holds λR(a) = ε.

Then for all ω ∈ Σ∗ and x ∈ λ′−1
R (λ′

R(h(ω))) holds h−1(x)∩λ−1
R (λR(ω)) �= ∅.

Proof: We prove the lemma by induction over the length of ω.

Induction basis: Let ω = ε. Then λ′
R(x) = ε implies x ∈ [Σ′ ∩ λ

′−1
R (ε)]∗. By

condition (1) it follows the existence of y ∈ Σ∗ ∩ λ−1
R (ε) with h(y) = x and

further y ∈ h−1(x) ∩ λ−1
R (λR(ε)).

Induction hypothesis: The assertion holds for ω ∈ Σ∗ and x ∈ λ′−1
R (λ′

R(h(ω))).
Induction step: Let ω ∈ Σ∗, a ∈ Σ, λ′

R(x)=λ′
R(h(ω)h(a))=λ′

R(h(ω))λ′
R(h(a)).

1. λ′
R(h(a)) �= ε

Then there exists x = u′t′v′ with t′ ∈ Σ′, λ′
R(u′) = λ′

R(h(ω)), λ′
R(t′) =

λ′
R(h(a)) and λ′

R(v′) = ε. Because of the induction hypothesis there
exists u ∈ Σ∗ with h(u) = u′ and λR(u) = λR(ω). Because of condition
(2) there exists t ∈ Σ with h(t) = t′ and λR(t) = λR(a).
As for the induction basis, it follows that there exists v ∈ Σ∗ with
λR(v) = ε and h(v) = v′. As a consequence we have h(utv) = u′t′v′ = x
and λR(utv) = λR(ω)λR(a) = λR(ωa).
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2. λ′
R(h(a)) = ε

(a) h(a) = ε
Then we have λ′

R(x) = λ′
R(h(ω)h(a)) = λ′

R(h(ω)). The induction
hypothesis implies the existence of y ∈ Σ∗ with h(y) = x and
λR(y) = λR(ω). It follows h(ya) = x and λR(ya) = λR(ωa).

(b) h(a) �= ε and λ′
R(h(a)) = ε.

As above there exists y ∈ Σ∗ with h(y) = x and λR(y) = λR(ω).
Condition (3) implies λR(y) = λR(ωa).

�

Lemma A.6. If the preconditions of Lemma A.5 hold, then Λ′
R(h(ω), W ′

R) ⊆
h[ΛR(ω, h−1(W ′

R))].

Proof: Let x ∈ Λ′
R(h(ω), W ′

R). By Lemma A.5 there exists y ∈ Σ∗ with
h(y) = x and λR(y) = λR(ω). Thus it follows y ∈ ΛR(ω, h−1(W ′

R)), hence
x ∈ h[ΛR(ω, h−1(W ′

R))]. �

Now Lemma A.6 and Lemma A.4 prove Theorem 4.

A.2 Proof of Proposition 3

In order to show that the condition of Definition 2 does not hold we need to
show that there exist s ω ∈ S such that for all Aω ⊆ Σ∗

t holds

µ[Λ̃V (ω, WV )]
⊂
�= µ′[Λ̃′

V (h(ω), WV )] ∩ pt
−1(Aω) (2)

Consider ω = send-offer(S, U, cheap)rec-offer(U, S, cheap)send-order(U, S,
cheap). V ’s local view of this particular sequence of actions is

λ̃V (ω) = send-offer(S, U)rec-offer(U, S)send-order (U, S)
and the set of sequences V considers possible contains only one sequence:

Λ̃V (ω, WV ) = send-offer(S, U, cheap)rec-offer(U, S, cheap)
send-order (U, S, cheap) = ω

The reason for this is that V knows (through his knowledge set WV ) that U
only orders the cheap price, and he sees that U receives an offer by S and then
orders, thus the price offered by S must be equal to cheap.
Thus we have for the left hand side of Equation 2

µ[Λ̃V (ω, WV )] = µ(ω) = (send-offer(S, U), cheap)(rec-offer(U, S), cheap)

For the right hand side of Equation 2 we have

h(ω) = send-offer(S, U, cheap)rec-offer(U, S, cheap)
thus

λ̃′
V (h(ω)) = ε

therefore
λ̃′−1

V (λ̃′
V (h(ω))) ∩ W ′

V = (Σ′ \ Σ′
/V )∗ ∩ W ′

V
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Thus in order to show that h is parameter confidential we would have to show

(send-offer(S, U), cheap)(rec-offer(U, S), cheap) =
µ′[(Σ′ \ Σ′

/V )∗ ∩ W ′
V ] ∩ p−1

t (Aω)

for some suitable Aω ⊆ Σt
∗.

Consequently, the sequence (send-offer(S, U), exp)(rec-offer (U, S), exp) may not
be element of p−1

t (Aω). However, we either have

{(send-offer(S, U), exp)(rec-offer(U, S), exp),
(send-offer(S, U), cheap)(rec-offer(U, S), cheap)} ⊆
p−1

t (Aω) ∩ µ′[(Σ′ \ Σ′
/V )∗]

that is

µ[Λ̃V (ω, WV )]
⊂
�= p−1

t (Aω) ∩ µ′[(Σ′ \ Σ′
/V )∗]

or we have

{(send-offer(S, U), exp)(rec-offer (U, S), exp),
(send-offer(S, U), cheap)(rec-offer(U, S), cheap)} ∩ p−1

t (Aω)
∩µ′[(Σ′ \ Σ′

/V )∗] = ∅

that is
µ[Λ̃V (ω, WV )] �⊆ p−1

t (Aω) ∩ µ′[(Σ′ \ Σ′
/V )∗]

So there is no Aω ⊆ Σt
∗ such that the condition in Definition 2 is satisfied.
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