
Integrating XML Linked Time-Stamps
in OASIS Digital Signature Services

Ana Isabel González-Tablas1 and Karel Wouters2

1 Carlos III University (Madrid),
Computer Science Department - SeTI

aigonzal@inf.uc3m.es
2 Katholieke Universiteit Leuven,

Department Electrical Engineering - ESAT, Cosic
karel.wouters@esat.kuleuven.be

Abstract. The technique of electronic time-stamping allows a client to
get an electronic proof of the existence of a document at a specific point
in time. A simple way to achieve this is to produce a digital signature
over the pair (document,time). Linked time-stamps have an advantage
over these simple time-stamps because they construct a verifiable link
between time-stamps. In this paper, we discuss how to include linked
time-stamps in the OASIS Digital Signature Services standard. We
highlight the problem points when introducing a sub-profile of this
standard, and we describe some additional structures that are needed
to accommodate a broad range of linked time-stamping schemes.

Keywords: Linked time-stamping, Digital Signature Services, XML se-
curity.

1 Introduction

In recent years, time-stamping implementations have become popular in seve-
ral countries. Studies, performed by the European Committee for Standardi-
zation [10], clearly identified the need for time-stamps when using electronic
signatures. This has been followed by a range of standardization efforts [1,3].
With the rise of XML as a language to structure communications, XML formats
for security protocols were proposed too. In 2002, the OASIS Digital Signature
Services Technical Committee (DSS TC) was formed[8]. Its purpose is to develop
techniques to support the processing of digital signatures, including the deve-
lopment of a profile for time-stamping, with a focus on XML formats. At the
moment of this writing, the time-stamping profile includes support for so-called
independent time-stamp tokens. In this paper, we investigate the possibility of
including linked time-stamp tokens in the DSS standard, driven by the believe
that this kind of time-stamp is more desirable in certain settings, despite its com-
plexity. In the next two sections we give an overview of existing time-stamping
schemes and the OASIS DSS standard. This is followed by a description of the
structures for linked time-stamp requests and verifications, and its processing.

J. Dittmann, S. Katzenbeisser, and A. Uhl (Eds.): CMS 2005, LNCS 3677, pp. 301–310, 2005.
c© IFIP International Federation for Information Processing 2005

302 A.I. González-Tablas and K. Wouters

2 Time-Stamping Schemes

Digital time-stamping is a set of techniques that enables us to determine if a
certain digital document has been created before a given time. A trusted third
party – a Time-Stamping Authority (TSA) – implements this by creating time-
stamps, the digital assertions that a given document was presented to the TSA
at a given time. A common practise is to time-stamp documents that represent
new inventions and discoveries (log files, financial audit reports). This helps to
establish first-to-invent claims or document authenticity [13]. Time-stamping can
also play a role in Public Key Infrastructures (PKI). In this context, time-stamps
are used to extend the lifetime of digital signatures: a time-stamp on a digital
signature can prove that the signature was generated before the certificate on
the signature key-pair was revoked. We distinguish two classes of time-stamping
schemes, which are described below.

2.1 Schemes Producing Independent Time-Stamps

Simple schemes generate time-stamps that are independent of other time-stamps.
A classical example is the digital signature of a TSA on a pair (time,document),
which is standardised in RFC3161 [3] and in ISO/IEC FDIS 18014-2 [2]. A
limitation of these schemes is that they assume a high level of trust in the TSA,
and possible fraudulent behaviour of the TSA remains undetected. The time-
stamping profile [9] of DSS is aimed at this kind of time-stamp.

2.2 Schemes Producing Linked Time-Stamps

Linking schemes limit the required trust in the TSA by including data from other
time-stamps into the computation of the issued time-stamp, such that they de-
pend on each other. Linking happens in three phases:
Aggregation: in the first step, all documents received by the TSA within a
small time interval – the aggregation round – are considered as being submitted
simultaneously. The output of the aggregation round is a binary string that se-
curely depends on all the documents submitted in that round.
Linking: the output of the aggregation round is linked to previously computed
aggregation round values. The resulting value cannot be computed without the
existence of previous aggregation round values. This establishes a one-way order
between aggregation round values, such that so-called relative temporal authenti-
cation is obtained: time-stamps of different aggregation rounds can be compared.
Publication: from time to time (e.g., each week), the TSA publishes the most
recent time-stamp in a widely witnessed medium, such as a newspaper. By do-
ing this, the TSA commits itself to all of the previously issued time-stamps.
The published values are used for verifying time-stamps and they enable other
parties to check if the TSA is behaving properly.

Examples of linking schemes can be found in Bayer et al. [4], and Buldas et
al. [6]. In these cases, the linking can be visualised by a graph and optimised in
time-stamp size. In Benaloh et al. [5] and Merkle [12], some aggregation schemes
are proposed.

Integrating XML Linked Time-Stamps in OASIS Digital Signature Services 303

3 OASIS Digital Signature Services Standard

In October 2002, the Digital Signature Services Technical Committee (DSS TC)
was formed within OASIS. The purpose of this TC is to develop techniques (a
standard) to support the processing of digital signatures. The core document
specifies a simple client/server protocol on which the actual services are built.
These services are specified by profiles. The core protocols support the creation
and verification of signatures and time-stamps. The core document is aimed at
XML Digital Signatures [7] and CMS Signatures [11]. The standard accommo-
dates RFC3161 time-stamps [3] and a DSS XML time-stamp format [9]. XML
elements, taken from the W3C XML Digital Signature standard are prefixed by
‘ds:’ while elements from the OASIS DSS standard are not prefixed. The new
elements, proposed in this paper, are prefixed by ‘tsp:’.

The DSS core protocol is composed of two operational types: one for sig-
nature generation and one for signature verification. A typical use of the pro-
tocols is submitting a document or its digest value to a DSS server through a
<SignRequest> element. The DSS server will return a signature on the sub-
mitted values, in a <SignResponse> element. Later on, the signature can be
submitted to the DSS server for verification, by sending a <VerifyRequest>
element. The essence of the response is a valid/invalid indication, returned
in a <VerifyResponse> element. The DSS core standard also specifies an
XML structure for independent time-stamp tokens. The DSS <TimeStamp>
children are <ds:Signature> and <RFC3161TimeStampToken>. The element
<RFC3161TimeStampToken> allows for the inclusion of a base64-encoded
RFC3161 time-stamp. In the <ds:Signature> case, a <TstInfo> element is
placed in <ds:Object> and covered by the signature. This <TstInfo> element
is a XML translation of the RFC3161 TSTInfo structure.

The XML Timestamping Profile of OASIS DSS [9] restricts the services of
the DSS core to a time-stamping protocol. The main restriction is that only
hash values (no documents) can be sent to the TSA. Furthermore, for the
<SignRequest/OptionalInputs>, two values for <SignatureType> are pro-
posed to identify the time-stamping schemes mentioned above. Finally, the TSA
can include only a <SigningTime> optional output in the <VerifyResponse>.

The current DSS standard does not specify a structure to integrate linked
time-stamps. The authors have knowledge of at least two large commercial
TSAs that have deployed a linked time-stamp service. Furthermore, these time-
stamping schemes have some advantages over simple schemes. Therefore, we
think that linked time-stamps should not be ignored in the OASIS DSS standard.
Moreover, as far as we know, there exists no other XML standard that allows for
an easy integration of this class of time-stamping schemes. We should note that
the X9.95 proposal by ANSI is based on an XML translation of ASN.1 structures;
our approach differs by the fact that we start from a standard, based on XML
Digital Signatures. In this paper, we present a possible path to include linked
time-stamps in the DSS standard through a subprofile of the OASIS DSS XML
time-stamping profile in [9]. Our subprofile defines a new XML linked time-stamp
token, as a sibling of the <ds:Signature> and <RFC3161TimeStampToken>.

304 A.I. González-Tablas and K. Wouters

4 Integrating XML Linked Time-Stamps in the XML
Time-Stamping Profile of OASIS DSS

4.1 Issuing Protocol

In this section, we describe the XML elements that are exchanged when a client
wants to get a certain document time-stamped by the TSA. The main contribu-
tion is the definition of a linked time-stamp format, which allows to model most
linked time-stamps. This definition is based on previous work in [15], in which
an example XML fragment can be found.

Element <SignRequest>

– Element <SignRequest/OptionalInputs/SignatureType> The content of
the optional input <SignatureType> should identify the requested linking
scheme. An example for identifying an existing linking scheme could be
ee:cyber:timestamp.

– Element <SignRequest/InputDocuments/DocumentHash> As described in
[8], the digest value contained in each <DocumentHash> is the result of ap-
plying a digest method, specified in the same element, to one or more docu-
ments. If a client wants to time-stamp the same content with several digest
algorithms, several <InputDocuments> elements can be included, each con-
taining a <DocumentHash> element with a different digest algorithm. This
is useful if one of the hash functions gets compromised as shown in [14].

Element <SignResponse> The server must return a <Timestamp> signa-
ture object as defined in [9]. The new <tsp:LinkedTimestamp> element will
be a child of the <SignResponse/SignatureObject/Timestamp> element. Its
structure is presented in Figure 1 and we describe its key aspects below.

– Element <InputDocuments>. This element should be copied from the
<SignRequest> element. In the DSS TST profile [9], these values are copied
into the signature, so the resulting time-stamp contains them by default. As
in our profile, it is optional to sign these values directly, we need to copy
them somewhere else to reconstruct the input of the aggregation (or linking)
operation.

– Element <TstInfo>. This element is optional and can contain values as
discussed in the DSS core.

– Element <ds:Signature>. In our profile, the signature is optional
and can only contain <ds:Reference> elements pointing to the
<InputDocuments>, <tsp:BindingInfo> and/or <TstInfo> children of
its <tsp:LinkedTimestamp> parent. This signature can be discarded from
the time-stamp, once the linking round finishes. After that stage, the evi-
dence value of the time-stamp lies in the binding information, rather than
in the signature.

– Element <tsp:BindingInfo>. This element should contain the binding in-
formation of the linked time-stamp. This element is used as follows:

Integrating XML Linked Time-Stamps in OASIS Digital Signature Services 305

tsp:LinkedTimeStamp

InputDocuments

TstInfo

ds:Signature

tsp:BindingInfo

tsp:UnsignedInfo

Document

documentHash
ds:DigestMethod

ds:DigestValue

...

any

SerialNumber

CreationTime

Policy

ErrorBound

Ordered

TSA

ds:SignedInfo

ds:SignatureMethod

ds:CanonicalizationMethod

ds:Reference

ds:SignatureValue

ds:KeyInfo

ds:Object

tsp:DigestAlgValue

ds:DigestMethod

ds:DigestValue

tsp:AggregationInfo

tsp:LinkingInfo

tsp:PublishedInfo

Fig. 1. tsp:LinkedTimestamp element

• The <tsp:DigestAlgValue> element contains the digest value that
is passed on to the linking scheme. This value is obtained as follows:
First, we build a node set using an XPath expression which selects the
descendant-or-self elements and attributes of the <DigestMethod>
and the <DigestValue> in the <DocumentHash> elements that have
been copied into <tsp:LinkedTimestamp/dss:InputDocuments> ele-
ment. Optionally, we can also attach <TstInfo> to the node set. Next,
we take the excl-CN14 transform of this node set which should result
in an octet string. This octet string is hashed using the specified digest
method in <tsp:DigestAlgValue>.

• The <tsp:AggregationInfo> element, if present, specifies the aggre-
gation algorithm and the necessary data to compute the output of the
aggregation round using the <tsp:DigestAlgValue> element.

• The <tsp:LinkingInfo> element contains the algorithm and data to
compute the value of the linking round, given the output of the aggre-
gation round.

∗ <tsp:Head> contains linking information from time-stamps issued
before this one.

∗ <tsp:Tail> contains information from time-stamps after this one.
It is computed by the TSA at the end of the linking round. In most
cases, this element will not be present in the <SignResponse> ele-
ment, as the necessary information is not available at the time of
generating the time-stamp. This information will be added in the
verifying protocol. How this affects the signature, is discussed in the
next section.

306 A.I. González-Tablas and K. Wouters

∗ <ds:Object> contains information that is ‘unnatural’ to include di-
rectly into <tsp:Head> or <tsp:Tail>, but is used in some linking
schemes. It can be referenced from within these elements.

• The <tsp:PublishedInfo> contains round values for linking rounds,
plus the location where they can be retrieved or verified.

– Element <tsp:UnsignedInfo>. If the signature on an existing time-stamp
should remain valid after completion of the time-stamp with values generated
after this time-stamp, additional information can be placed here. As it is not
covered by the signature, adding things here will not break the signature.
This element will not be present in the <SignResponse> element, but it
will be added in the verifying protocol.

4.2 Verifying Protocol

Here, we describe the XML elements used in the verification of linked time-
stamps. The biggest challenge here is enabling its comparison and extension
within the DSS approach. We give a short description of these operations, and
describe how the DSS elements can be used to realise them.

– Verify a time-stamp TS1 against another time-stamp TS2.
Upon this request, the verifier should get a response from the server indica-
ting one of the following cases: (a) TS1 was issued before TS2 (‘earlier’), (b)
TS1 was issued after TS2 (‘later’), (c) an error. The server can determine
the response using the times in the signed information, or using the linking
information between the two time-stamps directly. Our protocol also allows
the verification of a timestamp TS1 alone, not against another one.

– Update a time-stamp TS1 to a published value PV or to an arbi-
trary second time-stamp TS2.
Updating a time-stamp means that the linking information in that time-
stamp is updated such that the link between the time-stamp and a certain
other value can be computed with the information held in the time-stamp.
Updating TS1 to a PV means one of the following cases: (a) the comple-
tion of the time-stamp within its same round, or (b) the extension to the
last published value. Depending on the time when the update is requested,
a completion (a) or an extension (b) should be returned. For most linking
schemes, the extension to the PV should include the completion of an (in-
complete) time-stamp.
If a completion is done, the signed <tsp:BindingInfo> is replaced by a new
<tsp:BindingInfo>. If an extension is done, the new linking information
can be placed in <tsp:UnsignedInfo> or in <tsp:BindingInfo>. In the
last case, a new <ds:Signature> has to be computed to replace the one
present in the time-stamp, if the signature is still needed.
Extending the time-stamp TS1 to other time-stamp TS2 means that the
server should include in the response enough information (chain of digest
values and optionally published values) to allow the client to verify the tem-
poral relationship between TS1 and TS2. In most cases this means building

Integrating XML Linked Time-Stamps in OASIS Digital Signature Services 307

the hash chain that passes through both time-stamps TS1 and TS2. As in
the case of updating to a PV, this new information can be signed or not.
It is assumed in the protocol that TS1 has been issued earlier than TS2. If
it is not this case, the server should return a response indicating that the
client can change their order and make a new request for the extension.

Next, we describe the elements that allow the functionality above.

Element <VerifyRequest> Important modified children of this element are:

– Element <OptionalInputs>. Contrary to [9], in this protocol the following
optional inputs are allowed.

• Element <tsp:RelativeTimestamp> can contain a <Timestamp>
child, a second time-stamp TS2. Alternatively, its URI attribute
can refer to TS2 (using, for example, the serial number). This
is an optional element, but is mandatory if the optional input
<tsp:CompareLinkedTimestamp> is present in the verify request. The
time-stamp TS1 in the <SignatureObject> element will be updated or
compared to TS2.

• Element <tsp:CompareLinkedTimestamp> is an empty element which
indicates that time-stamp TS1 must be compared to the time-stamp TS2
contained in the <tsp:RelativeTimestamp> optional input, that must
be present in this case.

• Element <UpdateLinkedTimestamp> indicates that the client wants to
update his time-stamp TS1. This optional element has an URI attribute
that can contain one of the following items: a local reference to the ID
attribute of the <tsp:RelativeTimestamp> optional input, a reference
to a published value, or an empty reference. If in the last case, TS1
should be updated to the most recent published value.

– Element <SignatureObject>. The client sends a <Timestamp> element
containing the time-stamp TS1.

– Element <InputDocuments>. The client must only send <DocumentHash>
elements; <Document> elements are not allowed.

Element <VerifyResponse> This element contains the TSA’s response. It
holds a status code and optionally and updated time-stamp.

– Element <Result>. Our profile defines additional <ResultMinor> children
of <Result>, all of them prefixed with urn:oasis:names:tc:dss:1.0:
resultminor:. If the verification is successful, the server returns:

• ValidLinkedTimestamp Earlier: TS1 has been found earlier than TS2.
• ValidLinkedTimestamp Later: TS1 has been found later than TS2.
• LinkedTimestamp Updated: TS1 was updated.

Otherwise, if verification has failed, the following <ResultMinor> codes
may be returned:

• IncorrectTimestamp: The time-stamp fails to verify, indicating that the
time-stamp was modified, or that the time-stamp has been computed
incorrectly.

308 A.I. González-Tablas and K. Wouters

• IncomparableTimestamps: TS1 cannot be compared to TS2. A possible
reason might be that they are in the same aggregation round.

• IncorrectOrder: Updating TS1 to a certain value V failed because V
existed prior to TS1. We only allow forward extensions in our protocol.

• NoPublishedValue: There is no new published value yet.
– Element <OptionalOutputs>. Our profile defines <tsp:UpdatedLinked-

Timestamp>, as an optional child of <OptionalOutputs>. This element
shall contain the original linked time-stamp TS1 with some additional infor-
mation added to it (completion or extension information). Optionally, the
added information can be signed, depending on where the information is
added, as explained above.

4.3 Processing of XML Linked Time-Stamp Tokens

Signing Protocol Upon receiving a <SignRequest> a DSS server will form
a <SignatureObject/Timestamp/tsp:LinkedTimeStamp> as follows: First, it
copies <SignRequest/InputDocuments> into a <tsp:LinkedTimeStamp> ele-
ment. Then, optionally, the server computes a <TstInfo> element and enters it
as the second child of <tsp:LinkedTimeStamp>. Next, the server computes the
<tsp:BindingInfo> as it is described in section 4.1 and a <ds:Signature>
element according to [7], which are entered as the third and fourth child of
<tsp:LinkedTimeStamp>. The server may include <ds:Signature/Signed-
Info/Reference> elements pointing to <InputDocuments>, <TstInfo> (op-
tional) and <tsp:BindingInfo> elements. Then, an appropriate <Result>
element is generated, depending on if the previous steps were successful. Fi-
nally, the <Result> and the <SignatureObject> elements are entered into a
<SignResponse>, and returned to the requester.

Verifying Protocol Upon receiving a <VerifyRequest>, a DSS server will
perform the following steps. If this fails, the appropriate error will be returned
in the <Result> element.

– Verification.
There must exist a <SignatureObject/Timestamp/tsp:Linked
TimeStamp> element (TS1) present as a child of the <VerifyRequest>.
First, the server gets the <TstInfo> element if present, and verifies
that the <Policy> contained in it is acceptable according to the relying
party’s policy. Then, the server gets the <tsp:BindingInfo> element and
verifies that the <tsp:BindingInfo/tsp:DigestAlgValue> element value
has been computed taking as inputs the children of <InputDocuments>
and, optionally, the <TstInfo> element. After that, the server must
verify the <tsp:AggregationInfo> (if present) and <tsp:LinkingInfo>
elements as specified by the <tsp:BindingInfo> algorithm. This includes
retrieving the trust anchors (published reference values) needed to check
the time-stamp and comparing them to the reference values stored in
<tsp:Head>, <tsp:Tail> and <tsp:PublishedInfo>. If the element

Integrating XML Linked Time-Stamps in OASIS Digital Signature Services 309

<ds:Signature> is present, the server performs the standard checks on the
signature keys as specified in the OASIS DSS standard. After checking that
the <ds:Reference> elements point to <InputDocuments>, <TstInfo>
and <tsp:BindingInfo> elements, the server must verify all digests and
the signature according to [7].

– Comparison.
If there exists a <tsp:CompareLinkedTimeStamp> optional input, the server
should verify that there is also a <tsp:RelativeTimestamp> optional in-
put. In this case, the server must retrieve the <tsp:LinkedTimestamp>
element TS2 from the element <tsp:RelativeTimestamp> and verify it as
described above (Verification step). Then, the server builds the chain of di-
gests between the two time-stamps according to the binding algorithm and
the time-stamping policy. This step will determine the temporal relation
between the time-stamps.

– Update.
If there exists a <tsp:UpdateLinkedTimeStamp> optional input which con-
tains an URI attribute pointing to <tsp:RelativeTimestamp> optional
input, and it has not been verified during the Comparison step, the server
must verify it. If the URI attribute points to a published value PV or an-
other time-stamp TS3, the server should verify that it is a correct identifier,
and retrieve and verify PV or TS3. Then, the server should build the chain
of digests that passes through the time-stamp TS1 and the requested ex-
tension point (TS3, PV or most recent PV). If the linked time-stamp can
be extended to that extension point, the extension information is placed in
<tsp:BindingInfo> or in <tsp:UnsignedInfo>, depending on the bin-
ding algorithm and the time-stamping policy.

5 Implementation

To implement the scheme, we can start from a standard DSS implementation,
with adjustments to handle linked time-stamp requests. The implementation will
have a first presentation tier which receives the request, verifies the syntax and
determines to which service module it has to be dispatched.

The service modules in the second tier will determine the nature of the request
(time-stamp generation/verification), and will pass the request to a suitable plug-
in component in a third tier. If the server supports several linking schemes, the
element <SignRequest/OptionalInputs/SignatureType> indicates the spe-
cific linked time-stamp scheme asked by the client and this should help the server
to allocate the requests; otherwise the server should know which one should be
applied. In the case of <VerificationRequest>s, there is no specific indication
of the applied linked time-stamp in the main body, but the <LinkedTimeStamp>
element should carry enough information to allow the server to identify which
kind of linked time-stamp contains, and therefore, which linked time-stamp mo-
dule it may be assigned to.

310 A.I. González-Tablas and K. Wouters

6 Conclusions

In this paper, we sketched a path to include linked time-stamp tokens in the
OASIS DSS standard [8] by making a sub-profile of the existing time-stamping
profile [9] for this standard. We discussed several points at which our subprofile
collides with the original profile, and we think that some changes to the standard
could help the integration of linked time-stamps. We hope to have an impact in
the DSS standardization body to which we will present a fully elaborated version
of this paper.

References

1. ISO/IEC 18014-1. Information technology – Security techniques – Time-stamping
services – Part 1: Framework, 2002.

2. ISO/IEC 18014-2. Information technology – Security techniques – Time-stamping
services – Part 2: Mechanisms producing independent tokens, 2003.

3. C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Inter-
net X.509 Public Key Infrastructure Time-Stamp Protocol (TSP).
www.ietf.org/html.charters/pkix-charter.html, April 2002.

4. Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improving the Efficiency and
Reliability of Digital Time-Stamping. In Sequences II: Methods in Communication,
Security and Computer Science, pages 329–334. Springer-Verlag, 1993.

5. J. Benaloh and M. de Mare. One-way Accumulators: A Decentralized Alternative
to Digital Signatures. In T. Helleseth, editor, Advances in Cryptology - Proceedings
of EuroCrypt ‘93, volume 765 of Lecture Notes in Computer Science, pages 274–
285, Lofthus, Norway, May 1993. Springer-Verlag.

6. Ahto Buldas, Helger Lipmaa, and Berry Schoenmakers. Optimally Efficient Ac-
countable Time-Stamping. In Public Key Cryptography - PKC’2000, number 1751
in Lecture Notes in Computer Science, pages 293–305. Springer-Verlag, 2000.

7. D. Eastlake, J. Reagle, and D. Solo. XML-Signature Syntax and Processing.
www.w3.org/Signature, February 2002.

8. T. Perrin et al. OASIS Digital Signature Services TC. Digital Signature
Service (DSS) Core Protocols, Elements and Bindings, Working Draft 26.
www.oasis-open.org, June 2004.

9. T. Perrin et al. OASIS Digital Signature Services TC. XML Timestamping DSS
Profile, Working Draft 06. www.oasis-open.org, June 2004.

10. European Committee for Standardization CEN. CWA 14171: Procedures for Elec-
tronic Signature Verification. www.cen.eu.org, 2001.

11. R. Housley. Cryptographic Message Syntax. http://www.ietf.org/html.
charters/smime-charter.html, April 2002.

12. Ralph C. Merkle. Protocols for public key cryptosystems. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 122–134, 1980.

13. Surety. Surety AbsoluteProof Solution Suite . www.surety.com.
14. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for Hash

Functions MD4, MD5, HAVAL-128 and RIPEMD. Rump session of CRYPTO
2004, available at http://eprint.iacr.org/2004/199.pdf, August 2004.

15. Karel Wouters, Bart Preneel, Ana Isabel González-Tablas, and Arturo Ribagorda.
Towards an XML Format for Time-Stamps. In ACM Workshop on XML Security
2002. ACM, ACM, November 2002.

www.ietf.org/html.charters/pkix-charter.html
www.w3.org/Signature
www.oasis-open.org
www.oasis-open.org
www.cen.eu.org
http://www.ietf.org/html.charters/smime-charter.html
http://www.ietf.org/html.charters/smime-charter.html
www.surety.com
http://eprint.iacr.org/2004/199.pdf

	Introduction
	Time-Stamping Schemes
	Schemes Producing Independent Time-Stamps
	Schemes Producing Linked Time-Stamps

	OASIS Digital Signature Services Standard
	Integrating XML Linked Time-Stamps in the XML Time-Stamping Profile of OASIS DSS
	Issuing Protocol
	Verifying Protocol
	Processing of XML Linked Time-Stamp Tokens

	Implementation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

