Skip to main content

The Complexity of Semilinear Problems in Succinct Representation

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

  • 838 Accesses

Abstract

We prove completeness results for twenty-three problems in semilinear geometry. These results involve semilinear sets given by additive circuits as input data. If arbitrary real constants are allowed in the circuit, the completeness results are for the Blum-Shub-Smale additive model of computation. If, in contrast, the circuit is constant-free, then the completeness results are for the Turing model of computation. One such result, the P NP[log]-completeness of deciding Zariski irreducibility, exhibits for the first time a problem with a geometric nature complete in this class.

A full version of this paper can be obtained at http://www-math.upb.de/agpb

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adian, S.I.: Unsolvability of certain algorithmic problems in the theory of groups. Trudy Moskov. Math. Obshch. 6, 231–298 (1957) (in Russian)

    Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  3. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations I: Semilinear sets. SIAM J. Comp. 33, 227–260 (2004)

    Article  Google Scholar 

  4. Chandra, A., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM J. Comp. 13, 423–439 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cucker, F., Koiran, P.: Computing over the reals with addition and order: Higher complexity classes. Journal of Complexity 11, 358–376 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fournier, H., Koiran, P.: Are lower bounds easier over the reals? In: Proc. 30th ACM STOC, pp. 507–513 (1998)

    Google Scholar 

  7. Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Exact Analysis of Dodgson Elections: Lewis Carroll’s 1876 Voting System is Complete for Parallel Access to NP. Journal of the ACM, 806–825 (1997)

    Google Scholar 

  8. Khachijan, L.G.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 1093–1096 (1979); in Russian, English translation in Soviet Math. Dokl., 20, 191–194 (1979)

    Google Scholar 

  9. Koiran, P.: Computing over the reals with addition and order. Theoretical Computer Science 133, 35–47 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Krentel, M.W.: The complexity of optimization problems. In: Proc. 18th ACM Symp. on the Theory of Computing, pp. 79–86 (1986)

    Google Scholar 

  11. Meyer auf der Heide, F.: A polynomial linear search algorithm for the n-dimensional knapsack problem. J. ACM 31, 668–676 (1984)

    Article  MATH  Google Scholar 

  12. Papadimitriou, C.H.: On the complexity of unique solutions. J. ACM 31, 392–400 (1984)

    Article  MathSciNet  Google Scholar 

  13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  14. Papadimitriou, C.H., Zachos, S.: Two remarks on the power of counting. In: Cremers, A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp. 269–276. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  15. Rabin, M.: Recursive unsolvability of group theoretic problems. Ann. of Math. 67(2), 172–194 (1958)

    Article  MathSciNet  Google Scholar 

  16. Shafarevich, I.R.: Basic Algebraic Geometry. Springer, Heidelberg (1974)

    MATH  Google Scholar 

  17. Smale, S.: Mathematical problems for the next century. Mathematical Intelligencer 20, 7–15 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34, 250–256 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bürgisser, P., Cucker, F., de Naurois, P.J. (2005). The Complexity of Semilinear Problems in Succinct Representation. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_42

Download citation

  • DOI: https://doi.org/10.1007/11537311_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics