Skip to main content

An Evolutionary Strategy for the Multidimensional 0-1 Knapsack Problem Based on Genetic Computation of Surrogate Multipliers

  • Conference paper
Book cover Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach (IWINAC 2005)

Abstract

In this paper we present an evolutionary algorithm for the multidimensional 0–1 knapsack problem. Our algorithm incorporates a heuristic operator which computes problem-specific knowledge. The design of this operator is based on the general technique used to design greedy-like heuristics for this problem, that is, the surrogate multipliers approach of Pirkul (see [7]). The main difference with work previously done is that our heuristic operator is computed following a genetic strategy -suggested by the greedy solution of the one dimensional knapsack problem- instead of the commonly used simplex method. Experimental results show that our evolutionary algorithm is capable of obtaining high quality solutions for large size problems requiring less amount of computational effort than other evolutionary strategies supported by heuristics founded on linear programming calculation of surrogate multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balas, E., Martin, C.H.: Pivot and Complement–A Heuristic for 0–1 Programming. Management Science 26(1), 86–96 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balas, E., Zemel, E.: An Algorithm for Large zero–one Knapsack Problems. Operations Research 28, 1130–1145 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beasley, J.E.: Obtaining Test Problems via Internet. Journal of Global Optimization 8, 429–433 (1996)

    Article  MATH  Google Scholar 

  4. Chu, P.C., Beasley, J.E.: A Genetic Algorithm for the Multidimensional Knapsack Problem. Journal of Heuristics 4, 63–86 (1998)

    Article  MATH  Google Scholar 

  5. Freville, A., Plateau, G.: Heuristics and Reduction Methods for Multiple Constraints 0–1 Linear Programming Problems. Europena Journal of Operationa Research 24, 206–215 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gavish, B., Pirkul, H.: Allocation of Databases and Processors in a Distributed Computing System. In: Akoka, J. (ed.) Management od Distributed Data Processing, pp. 215–231. North-Holland, Amsterdam (1982)

    Google Scholar 

  7. Gavish, B., Pirkul, H.: Efficient Algorithms for Solving Multiconstraint Zero–One Knapsack Problems to Optimality. Mathematical Programming 31, 78–105 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  9. Khuri, S., Bäck, T., Heitkötter, J.: The Zero/One Multiple Knapsack Problem and Genetic Algorithms. In: Proceedings of the 1994 ACM Symposium on Applied Computing (SAC 1994), pp. 188–193. ACM Press, New York (1994)

    Chapter  Google Scholar 

  10. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, Chichester (1990)

    MATH  Google Scholar 

  11. Pirkul, H.: A Heuristic Solution Procedure for the Multiconstraint Zero–One Knapsack Problem. Naval Research Logistics 34, 161–172 (1987)

    Article  MATH  Google Scholar 

  12. Raidl, G.R.: An Improved Genetic Algorithm for the Multiconstraint Knapsack Problem. In: Proceedings of the 5th IEEE International Conference on Evolutionary Computation, pp. 207–211 (1998)

    Google Scholar 

  13. Rinnooy Kan, A.H.G., Stougie, L., Vercellis, C.: A Class of Generalized Greedy Algorithms for the Multi-knapsack Problem. Discrete Applied Mathematics 42, 279–290 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Thiel, J., Voss, S.: Some Experiences on Solving Multiconstraint Zero–One Knapsack Problems with Genetic Algorithms. INFOR 32, 226–242 (1994)

    MATH  Google Scholar 

  15. Vasquez, M., Hao, J.K.: A Logic-constrained Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite. Computational Optimization and Applications 20, 137–157 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso, C.L., Caro, F., Montaña, J.L. (2005). An Evolutionary Strategy for the Multidimensional 0-1 Knapsack Problem Based on Genetic Computation of Surrogate Multipliers. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_7

Download citation

  • DOI: https://doi.org/10.1007/11499305_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26319-7

  • Online ISBN: 978-3-540-31673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics