Skip to main content

Inferring a Graph from Path Frequency

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3537))

Abstract

We consider the problem of inferring a graph (and a sequence) from the numbers of occurrences of vertex-labeled paths, which is closely related to the pre-image problem for graphs in machine learning: to reconstruct a graph from its feature space representation. We show that this problem can be solved in polynomial time in the size of an output graph if graphs are trees of bounded degree and the lengths of given paths are bounded by a constant. On the other hand, we show that this problem is strongly NP-hard even for planar graphs of bounded degree.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, T.: An O(n log log n) time algorithm for constructing a graph of maximum connectivity with prescribed degrees. J. Computer and System Sciences 51, 503–510 (1995)

    Article  MathSciNet  Google Scholar 

  2. Bakir, G.H., Weston, J., Schölkopf, B.: Learning to find pre-images. Advances in Neural Information Processing Systems 16, 449–456 (2004)

    Google Scholar 

  3. Bakir, G.H., Zien, A., Tsuda, K.: Learning to find graph pre-images. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 253–261. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  6. Dinitz, Y., Itai, A., Rodeh, M.: On an algorithm of Zemlyachenko for subtree isomorphism. Information Processing Letters 70, 141–146 (1999)

    Article  MathSciNet  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  8. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proc. 20th Int. Conf. Machine Learning, pp. 321–328 (2003)

    Google Scholar 

  9. Lauri, J., Scapellato, R.: Topics in Graph Automorphisms and Reconstruction. Cambridge Univ. Press, Cambridge (2003)

    MATH  Google Scholar 

  10. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for SVM protein classification. In: Proc. Pacific Symposium on Biocomputing, vol. 7, pp. 564–575 (2002)

    Google Scholar 

  11. Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., Vert, J.-P.: Extensions of marginalized graph kernels. In: Proc. 21st Int. Conf. Machine Learning, pp. 552–559 (2004)

    Google Scholar 

  12. Maruyama, O., Miyano, S.: Inferring a tree from walks. Theoretical Computer Science 161, 289–300 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nachbar, R.B.: Molecular evolution: automated manipulation of hierarchical chemical topology and its application to average molecular structures. Genetic Programming and Evolvable Machines 1, 57–94 (2000)

    Article  MATH  Google Scholar 

  14. Pevzner, P.A.: Computational Molecular Biology. An Algorithmic Approach. The MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Raghavan, V.: Bounded degree graph inference from walks. J. Computer and System Sciences 49, 108–132 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schölkopf, B., Tsuda, K., Vert, J.-P. (eds.): Kernel Methods in Computational Biology. The MIT Press, Cambridge (2004)

    Google Scholar 

  17. Vinkers, H.M., de Jonge, M.R., Daeyaert, F.F.D., Heeres, J., Koymans, L.M.H., van Lenthe, J.H., Lewi, P.J., Timmerman, H., van Aken, K., Janssen, P.A.J.: Synopsis: synthesize and optimize system in silico. Journal of Medical Chemistry 46, 2765–2773 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akutsu, T., Fukagawa, D. (2005). Inferring a Graph from Path Frequency. In: Apostolico, A., Crochemore, M., Park, K. (eds) Combinatorial Pattern Matching. CPM 2005. Lecture Notes in Computer Science, vol 3537. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496656_32

Download citation

  • DOI: https://doi.org/10.1007/11496656_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26201-5

  • Online ISBN: 978-3-540-31562-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics