Skip to main content

Neurotrophin Trk Receptors: New Targets for Cancer Therapy

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology Vol. 174

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 174))

Abstract

In the last few years, exciting reports have emerged regarding the role of the two types of neurotrophin receptors, p75NTR and Trks, not only in neurons, where they were discovered, but also in non-neural cells and, especially, in numerous cancers, including breast, lung, colon-rectum, pancreas, prostate, glioblastoma, neuroblastoma, myeloma, and lymphoid tumors. Traditionally, p75NTR, activated by all neurotrophins and their precursors, is an inhibitor. In various cancers, however, activated p75NTR induces variable effects, from inhibition to stimulation of cell proliferation, dependent on their direct or coordinate/indirect mechanism(s) of action. TrkA, TrkB, and TrkC, activated by distinct neurotrophins, are high affinity stimulatory receptors. In cancers, activation of Trks, especially of TrkB, are stimulators of cell proliferation, aggressiveness, and metastases. In rare cancers, these processes are due not to receptor activation but to fusion or mutation of the encoding genes. A considerable panel of anti-Trk drugs, developed recently, has been investigated both in vitro and in living mice for their effects on cancer cells. Many such drugs protect from cancers by preventing cell proliferation and inducing apoptosis. At present, these drugs are under control by trials, to promote introduction in human therapy. Moreover, anti-Trk drugs have been employed also in combination with classical chemotherapeutic drugs. So far, studies in mice have been positive. The chemotherapeutic/anti-receptor combinations exhibited in fact increased potency and down-regulation of resistance, with no increase of side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albaugh P, Fan Y, Mi Y, Sun F, Adrian F, Li N, Jia Y, Sarkisova Y, Kreusch A, Hood T et al (2012) Discovery of GNF-5837, a selective TRK inhibitor with efficacy in rodent cancer tumor models. ACS Med Chem Lett 3:140–145

    Article  CAS  Google Scholar 

  • Alshehri MM, Robbins SM, Senger DL (2017) The role of neurotrophin signaling in gliomagenesis: a focus on the p75 neurotrophin receptor (p75NTR/CD271). Vitam Horm 104:367–404

    Article  CAS  Google Scholar 

  • Ardini E, Bosotti R, Borgia AL, De Ponti C, Somaschini A, Cammarota R, Amboldi N, Raddrizzani L, Milani A, Magnaghi P et al (2014) The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition. Mol Oncol 8:1495–1507

    Article  CAS  Google Scholar 

  • Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, Ballinari D, Ciomei M, Texido G, Degrassi A et al (2016) Entrectinib, a pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol Cancer Ther 15:628–639

    Article  CAS  Google Scholar 

  • Bernard-Gauthier V, Schirrmacher R (2016) Evaluation of WO2015042088 A1 – a novel urea-based scaffold for TrkA inhibition. Expert Opin Ther Pat 26:291–295

    Article  CAS  Google Scholar 

  • Bourgeois JM, Knezevich SR, Mathers JA, Sorensen PH (2000) Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 24:937–946

    Article  CAS  Google Scholar 

  • Chakravarthy R, Mnich K, Gorman AM (2016) Nerve growth factor (NGF)-mediated regulation of p75NTR expression contributes to chemotherapeutic resistance in triple negative breast cancer cells. Biochem Biophys Res Commun 478:1541–1547

    Article  CAS  Google Scholar 

  • Choi HS, Rucker PV, Wang Z, Fan Y, Albaugh P, Chopiuk G, Gessier F, Sun F, Adrian F, Liu G et al (2015) (R)-2-phenylpyrrolidine substituted imidazopyridazines: a new class of potent and selective pan-TRK inhibitors. ACS Med Chem Lett 6:562–567

    Article  CAS  Google Scholar 

  • Croucher JL, Iyer R, Li N, Molteni V, Loren J, Gordon WP, Tuntland T (2015) TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol 75:131–141

    Article  CAS  Google Scholar 

  • De la Cruz-Morcillo MA, Berger J, Sánchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A, Sindou P, Lacroix A, Descazeaud A et al (2016) p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget 7:34480–34497

    PubMed  PubMed Central  Google Scholar 

  • Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO (2016) Nerve growth factor TrkA as novel therapeutic target in cancer. Biochim Biophys Acta 1866:37–50

    CAS  PubMed  Google Scholar 

  • Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, Jimeno A, Varella-Garcia M, Aisner DL et al (2015) An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov 5:1049–1057

    Article  CAS  Google Scholar 

  • Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV et al (2017) Safety and anti-tumor activity of the multi-targeted pan-TRK, ROS1 and ALK inhibitor entrectinib (RXDX-101): combined results from two phases 1 trials (ALKA-372-001 and STARTRK-1). Cancer Discov 7:400–409

    Article  CAS  Google Scholar 

  • Dubanet L, Bentayeb H, Petit B, Olivrie A, Saada S, de la Cruz-Morcillo MA, Lalloué F, Gourin MP, Bordessoule D, Faumont N et al (2015) Anti-apoptotic role and clinical relevance of neurotrophins in diffuse large B-cell lymphomas. Br J Cancer 113:934–944

    Article  CAS  Google Scholar 

  • Forsyth PA, Krishna N, Lawn S, Valadez JG, Qu X, Fenstermacher DA, Fournier M, Potthast L, Chinnaiyan P, Gibney GT et al (2014) p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells. J Biol Chem 289:8067–8085

    Article  CAS  Google Scholar 

  • Genevois AL, Ichim G, Coissieux MM, Lambert MP, Lavial F, Goldschneider D, Jarrosson-Wuilleme L, Lepinasse F, Gouysse G, Herceg Z et al (2013) Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proc Natl Acad Sci U S A 110:3017–3022

    Article  CAS  Google Scholar 

  • Heinen TE, Dos Santos RP, da Rocha A, Dos Santos MP, Lopez PL, Silva Filho MA, Souza BK, Rivero LF, Becker RG, Gregianin LJ et al (2016) Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget 7:34860–34880

    Article  Google Scholar 

  • Hondemarck H (2012) Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 23:357–365

    Article  Google Scholar 

  • Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H, Balamuth N, Maris JM, Brodeur GM (2010) Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 16:1478–1485

    Article  CAS  Google Scholar 

  • Iyer R, Wehrmann L, Golden RL, Naraparaju K, Croucher JL, MacFarland SP, Guan P, Kolla V, Wei G, Cam N et al (2016) Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett 372:179–186

    Article  CAS  Google Scholar 

  • Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS (2017) Targeting TRK family proteins in cancer. Pharmacol Ther 173:58. doi:10.1016/j.pharmthera.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Lee WS, Jin W (2016) TrkB promotes breast cancer metastasis via suppression of Runx3 and Keap1 expression. Mol Cells 39:258–265

    Article  CAS  Google Scholar 

  • Lawn S, Krishna N, Pisklakova A, Qu X, Fenstermacher DA, Fournier M, Vrionis FD, Tran N, Chan JA, Kenchappa RS, Forsyth PA (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem 290:3814–3824

    Article  CAS  Google Scholar 

  • Li Z, Zhang Y, Tong Y, Tong J, Thiele CJ (2015) Trk inhibitor attenuates the BDNF/TrkB-induced protection of neuroblastoma cells from etoposide in vitro and in vivo. Cancer Biol Ther 16:477–483

    Article  CAS  Google Scholar 

  • Louie E, Chen XF, Coomes A, Ji K, Tsirka S, Chen EJ (2013) Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer brain metastasis. Oncogene 32:4064–4077

    Article  CAS  Google Scholar 

  • McDonald NQ, Chao MV (1995) Structural determinants of neurotrophin action. J Biol Chem 270(34):19669–19672

    Article  CAS  Google Scholar 

  • Meldolesi J (2017) Neurotrophin receptors in the pathogenesis, diagnosis and therapy of neurodegenerative diseases. Pharmacol Res 121:129–137

    Article  CAS  Google Scholar 

  • Narayanan R, Yepuru M, Coss CC, Wu Z, Bauler MN, Barrett CM, Mohler ML, Wang Y, Kim J, Snyder LM et al (2013) Discovery and preclinical characterization of novel small molecule TRK and ROS1 tyrosine kinase inhibitors for the treatment of cancer and inflammation. PLoS One 8:e83380

    Article  Google Scholar 

  • Odate S, Onishi H, Nakamura K, Kojima M, Uchiyama A, Kato M, Katano M (2013) Tropomyosin-related kinase B inhibitor has potential for tumor regression and relapse prevention in pulmonary large cell neuroendocrine carcinoma. Anticancer Res 33:3699–3703

    CAS  PubMed  Google Scholar 

  • Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau MO, Battu S, Lalloué F (2016) TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget 7:50349–50364

    Article  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signaling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  CAS  Google Scholar 

  • Ricciuti B, Brambilla M, Metro G, Baglivo S, Matocci R, Pirro M, Chiari G (2017) Targeting NTRK fusion in non-small cell lung cancer: rationale and clinical evidence. Med Oncol 34:105. doi:10.1007/s12032-017-0967-5

    Article  CAS  PubMed  Google Scholar 

  • Rolfo C, Ruiz R, Giovannetti E, Gil-Bazo I, Russo A, Passiglia F, Giallombardo M, Peeters M, Raez L (2015) Entrectinib: a potent new TRK, ROS1 and ALK inhibitor. Expert Opin Investig Drugs 24:1493–1500

    Article  CAS  Google Scholar 

  • Roselli S, Pundavela J, Demont Y, Faulkner S, Keene S, Attia J, Jiang CC, Zhang XD, Walker MM, Hondermarck H (2015) Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion. Oncotarget 6:10473–10486

    Article  Google Scholar 

  • Russo M, Misale S, Wei G, Siravegna G, Crisafulli G, Lazzari L, Corti G, Rospo G, Novara L, Mussolin B et al (2016) Acqired resistance to the Trk inhibitor entrectinib in colorectal calcium. Cancer Discov 6:36–44

    Article  CAS  Google Scholar 

  • Saltari A, Truzzi F, Quadri M, Lotti R, Palazzo E, Grisendi G, Tiso N, Marconi A, Pincelli C (2016) CD271 down-regulation promotes melanoma progression and invasion in three-dimensional models and in zebrafish. J Invest Dermatol 136:2049–2058

    Article  CAS  Google Scholar 

  • Seo JH, Jung KH, Son MK, Yan HH, Ryu YL, Kim J, Lee JK, Hong S, Hong SS (2013) Anti-cancer effect of HS-345, a new tropomyosin-related kinase A inhibitor, on human pancreatic cancer. Cancer Lett 338:271–281

    Article  CAS  Google Scholar 

  • Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, Zhou P, Beede AM, Fillmore CM, Caswell D et al (2014) Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci U S A 111:10299–10304

    Article  CAS  Google Scholar 

  • Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A, Avan A (2017) Therapeutic potentials of BDNF/TrkB in breast cancer: current status and perspectives. J Cell Biochem 118:2502. doi:10.1002/jcb.25943

    Article  CAS  PubMed  Google Scholar 

  • Tammiku-Taul J, Park R, Jaanson K, Luberg K, Dobchev DA, Kananovich D, Noole A, Mandel M, Kaasik A, Lopp M (2016) Indole-like Trk receptor antagonists. Eur J Med Chem 121:541–552

    Article  CAS  Google Scholar 

  • Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, Mahale S, Davies KD, Aisner DL, Pilling AB et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19:1469–1472

    Article  CAS  Google Scholar 

  • Vaishnavi A, Le AT, Doebele RC (2015) TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 5:25–34

    Article  CAS  Google Scholar 

  • Vera C, Tapia V, Vega M, Romero C (2014) Role of nerve growth factor and its TrkA receptor in normal ovarian and epithelial ovarian cancer angiogenesis. J Ovarian Res 7:82

    Article  Google Scholar 

  • Verbeke S, Tomellini E, Dhamani F, Meignan S, Adriaenssens E, Xuefen B (2013) Extracellular cleavage of the p75 neurotrophin receptor is implicated in its pro-survival effect in breast cancer cells. FEBS Lett 587:2591–2596

    Article  CAS  Google Scholar 

  • Wang TC, Luo SJ, Lin CL, Chang P, Chen FM (2015) Modulation of p75 neurotrophin receptor under hypoxic conditions induces migration and invasion of C6 glioma cells. Clin Exp Metastasis 32:73–81

    Article  CAS  Google Scholar 

  • Wilmet JP, Tastet C, Desruelles E, Ziental-Gelus N, Blanckaert V, Hondermarck H, Le Bourhis X (2011) Proteome changes induced by overexpression of the p75 neurotrophin receptor (p75NTR) in breast cancer cells. Int J Dev Biol 55:801–809

    Article  Google Scholar 

  • Zage PE, Graham TC, Zeng L, Fang W, Pien C, Thress K, Omer C, Brown JL, Zweidler-McKay PA (2011) The selective Trk inhibitor AZ623 inhibits brain-derived neurotrophic factor-mediated neuroblastoma cell proliferation and signaling, and is synergistic with topotecan. Cancer 117:1321–1391

    Article  CAS  Google Scholar 

  • Zhang W, Lin ZC, Zhang TX, Liu S, Liu X, Liu JJ, Niu Y (2014) TrkC expression predicts favorable clinical outcome in invasive ductal carcinoma of breast independent of NT-3 expression. Am J Cancer Res 4:811–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang LS, Ye SL, Luo P, Wang BL (2015) Blockage of tropomyosin receptor kinase A (TrkA) enhances chemosensitivity in breast cancer cells and inhibits metastasis in vivo. Int J Clin Exp Med 8:634–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Hao Q, Liao P, Luo S, Zhang M, Hu G, Liu H, Zhang Y, Cao B, Baddoo M et al (2016) Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. Elife 5:e15099

    PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Li Y, Haraguchi S, Yu M, Ohira M, Ozaki T, Nakagawa A, Ushijima T, Isogai E, Koseki H et al (2013) Dependence receptor UNC5D mediates nerve growth factor depletion-induced neuroblastoma regression. J Clin Invest 123:2935–2947

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Meldolesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Meldolesi, J. (2017). Neurotrophin Trk Receptors: New Targets for Cancer Therapy. In: Nilius, B., de Tombe, P., Gudermann, T., Jahn, R., Lill, R., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology Vol. 174. Reviews of Physiology, Biochemistry and Pharmacology, vol 174. Springer, Cham. https://doi.org/10.1007/112_2017_6

Download citation

Publish with us

Policies and ethics