Skip to main content

Biology and Industrial Applications of Chlorella: Advances and Prospects

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 153))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bar E, Rise M, Vishkautsan M, Arad S (1995) Pigments and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 146:527–534

    Article  CAS  Google Scholar 

  2. Gerken H, Donohoe B, Knoshaug E (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253

    Article  CAS  Google Scholar 

  3. Goncalves E, Johnson J, Rathinasabapathi B (2013) Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta 238:895–906

    Article  CAS  Google Scholar 

  4. Ikeda T, Takeda H (1995) Species-specific differences of pyrenoids in Chlorella (Chlorophyta). J Phycol 31:813–818

    Article  CAS  Google Scholar 

  5. Yamada T, Sakaguchi K (1982) Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch Microbiol 132:10–13

    Article  Google Scholar 

  6. Kessler E (1976) Comparative physiology, biochemistry, and the taxonomy of Chlorella (Chlorophyceae). Plant Syst Evol 125:129–138

    Article  Google Scholar 

  7. Kessler E, Huss VAR (1992) Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the culture collection of the University of Texas at Austin. J Phycol 28:550–553

    Article  Google Scholar 

  8. Takeda H (1991) Sugar composition of the cell wall and the taxonomy of chlorella (Chlorophyceae). J Phycol 27:224–232

    Article  CAS  Google Scholar 

  9. Takeda H (1993) Chemical-composition of cell-walls as a taxonomical marker. J Plant Res 106:195–200

    Article  CAS  Google Scholar 

  10. Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598

    Article  CAS  Google Scholar 

  11. Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43:529–542

    Article  Google Scholar 

  12. Lloyd NDH, Canvin DT, Culver DA (1977) Photosynthesis and photorespiration in algae. Plant Physiol 59:936–940

    Article  CAS  Google Scholar 

  13. Winokur M (1948) Photosynthesis relationships of Chlorella species. Am J Bot 35:207–214

    Article  CAS  Google Scholar 

  14. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  15. Wassink EC, Kok B, van Oorschot P (1964) The efficiency of light-energy conversion in Chlorella cultures as compared with higher plants. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington Publication, Washinton, D.C., pp 55–62

    Google Scholar 

  16. Shelp BJ, Canvin DT (1980) Utilization of exogenous inorganic carbon species in photosynthesis by Chlorella pyrenoidosa. Plant Physiol 65:774–779

    Article  CAS  Google Scholar 

  17. Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  Google Scholar 

  18. Ong S-C, Kao C-Y, Chiu S-Y, Tsai M-T, Lin C-S (2010) Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 101:2880–2883

    Article  CAS  Google Scholar 

  19. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396

    Article  CAS  Google Scholar 

  20. Fulke AB, Mudliar SN, Yadav R, Shekh A, Srinivasan N, Ramanan R, Krishnamurthi K, Devi SS, Chakrabarti T (2010) Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresour Technol 101:8473–8476

    Article  CAS  Google Scholar 

  21. Papazi A, Makridis P, Divanach P, Kotzabasis K (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol Plantarum 132:338–349

    Article  CAS  Google Scholar 

  22. Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manage 36:693–696

    Article  CAS  Google Scholar 

  23. Davis EA, Dedrick J, French CS, Milner HW, Myers J, Smith JHC, Spoehr HA (1964) Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington department of plant biology. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington Publication, Washington, D.C., pp 105–153

    Google Scholar 

  24. Shi X-M, Zhang X-W, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Tech 27:312–318

    Article  CAS  Google Scholar 

  25. Goldman JC, Brewer PG (1980) Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnol Oceanogr 25:352–357

    Article  CAS  Google Scholar 

  26. Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684

    Article  CAS  Google Scholar 

  27. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Tech 27:631–635

    Article  CAS  Google Scholar 

  28. Ördög V, Stirk W, Bálint P, van Staden J, Lovász C (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914

    Article  CAS  Google Scholar 

  29. Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259

    Article  CAS  Google Scholar 

  30. Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101:8658–8663

    Article  CAS  Google Scholar 

  31. Liu J, Huang J, Jiang Y, Chen F (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398

    Article  CAS  Google Scholar 

  32. Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456

    Google Scholar 

  33. Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738

    Article  CAS  Google Scholar 

  34. Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781

    Article  CAS  Google Scholar 

  35. Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761

    Article  CAS  Google Scholar 

  36. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  37. Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P (1999) Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: role of the concentration and frequence of administration. J Biotechnol 70:357–362

    Article  CAS  Google Scholar 

  38. Burlew JS (1964) Algal culture: from laboratory to pilot plant, 4th edn. Carnegie Institution of Washington Publication, Washington, D.C.

    Google Scholar 

  39. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  40. Lin L-P (2005) Chlorella: its ecology, structure, cultivation, bioprocess and application. Yi Hsien Publishing, Taipei, Taiwan

    Google Scholar 

  41. Masojidek J, Kopecky J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317

    Article  CAS  Google Scholar 

  42. Moheimani N (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398

    Article  CAS  Google Scholar 

  43. Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  44. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  CAS  Google Scholar 

  45. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  46. Lee Y-K, Ding S-Y, Low C-S, Chang Y-C, Forday W, Chew P-C (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J Appl Phycol 7:47–51

    Article  CAS  Google Scholar 

  47. Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43

    Article  Google Scholar 

  48. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    Article  CAS  Google Scholar 

  49. Liu J, Sommerfeld M, Hu Q (2013) Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Appl Microbiol Biotechnol 97:4785–4798

    Google Scholar 

  50. Zemke P, Sommerfeld M, Hu Q (2013) Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Appl Microbiol Biotechnol 97:5645–5655

    Article  CAS  Google Scholar 

  51. Zhang CW, Richmond A (2003) Sustainable, high-yielding outdoor mass cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galban in vertical plate reactors. Mar Biotechnol 5:302–310

    Article  CAS  Google Scholar 

  52. Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  53. Lee Y-K (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411

    Article  Google Scholar 

  54. Lee Y-K, Ding S-Y, Hoe C-H, Low C-S (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol 8:163–169

    Article  Google Scholar 

  55. Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  56. De la Hoz Siegler H, Ben-Zvi A, Burrell RE, McCaffrey WC (2011) The dynamics of heterotrophic algal cultures. Bioresour Technol 102:5764–5774

    Article  CAS  Google Scholar 

  57. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  Google Scholar 

  58. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  Google Scholar 

  59. Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426

    Article  CAS  Google Scholar 

  60. Chen Y-H, Walker TH (2012) Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids. Bioresour Technol 114:512–517

    Article  CAS  Google Scholar 

  61. Yan D, Lu Y, Chen Y-F, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493

    Article  CAS  Google Scholar 

  62. Cheng FC, Lin A, Feng JJ, Mizoguchi T, Takekoshi H, Kubota H, Kato Y, Naoki Y (2004) Effects of chlorella on activities of protein tyrosine phosphatases, matrix metalloproteinases, caspases, cytokine release, B and T cell proliferations, and phorbol ester receptor binding. J Med Food 7:146–152

    Article  Google Scholar 

  63. Suárez ER, Kralovec JA, Noseda MD, Ewart HS, Barrow CJ, Lumsden MD, Grindley TB (2005) Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydrate Res 340:1489–1498

    Article  CAS  Google Scholar 

  64. Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, Iwashima A (1995) Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochem 40:1433–1437

    Article  CAS  Google Scholar 

  65. Sheng J, Yu F, Xin Z, Zhao L, Zhu X, Hu Q (2007) Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem 105:533–539

    Article  CAS  Google Scholar 

  66. Cherng J-Y, Shih M-F (2005) Potential hypoglycemic effects of Chlorella in streptozotocin-induced diabetic mice. Life Sci 77:980–990

    Article  CAS  Google Scholar 

  67. Cherng J-Y, Shih M-F (2006) Improving glycogenesis in Streptozocin (STZ) diabetic mice after administration of green algae Chlorella. Life Sci 78:1181–1186

    Article  CAS  Google Scholar 

  68. Nakashima Y, Ohsawa I, Konishi F, Hasegawa T, Kumamoto S, Suzuki Y, Ohta S (2009) Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice. Neurosci Lett 464:193–198

    Article  CAS  Google Scholar 

  69. Merchant RE, Andre CA (2001) A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern Ther Health Med 7:79–91

    CAS  Google Scholar 

  70. Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A (2007) Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci Emerg 8:433–436

    Article  CAS  Google Scholar 

  71. Gouveia L, Raymundo A, Batista A, Sousa I, Empis J (2006) Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Euro Food Res Technol 222:362–367

    Article  CAS  Google Scholar 

  72. Hirayama K, Nakamura K (1976) Fundamental studies on the physiology of rotifers in mass culture—V. Dry Chlorella powder as a food for rotifers. Aquaculture 8:301–307

    Article  Google Scholar 

  73. Işik O, Sarihan E, Kuşvuran E, Gül Ö, Erbatur O (1999) Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains. Aquaculture 174:299–311

    Article  Google Scholar 

  74. Gouveia L, Choubert G, Pereira N, Santinha J, Empis J, Gomes E (2002) Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga. Aquac Res 33:987–993

    Article  CAS  Google Scholar 

  75. Gouveia L, Gomes E, Empis J (1996) Potential use of a microalga (Chlorella vulgaris) in the pigmentation of rainbow trout (Oncorhynchus mykiss) muscle. Z Lebensm Unters For A 202:75–79

    Article  CAS  Google Scholar 

  76. Gouveia L, Rema P, Pereira O, Empis J (2003) Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquacult Nutr 9:123–129

    Article  CAS  Google Scholar 

  77. Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J (1996) Chlorella vulgaris used to colour egg yolk. J Sci Food Agri 70:167–172

    Article  CAS  Google Scholar 

  78. Janczyk P, Franke H, Souffrant WB (2007) Nutritional value of Chlorella vulgaris: effects of ultrasonication and electroporation on digestibility in rats. Anim Feed Sci Tech 132:163–169

    Article  CAS  Google Scholar 

  79. Komaki H, Yamashita M, Niwa Y, Tanaka Y, Kamiya N, Ando Y, Furuse M (1998) The effect of processing of Chlorella vulgaris: K-5 on in vitro and in vivo digestibility in rats. Anim Feed Sci Tech 70:363–366

    Article  CAS  Google Scholar 

  80. Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol 98:5069–5079

    Google Scholar 

  81. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  Google Scholar 

  82. Shi XM, Chen F (1999) Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions. Food Nahrung 43:109–113

    Article  CAS  Google Scholar 

  83. Shi X-M, Chen F, Yuan J-P, Chen H (1997) Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol 9:445–450

    Article  CAS  Google Scholar 

  84. Shi X-M, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    Article  CAS  Google Scholar 

  85. Del Campo JA, Moreno J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

    Article  Google Scholar 

  86. Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    Article  CAS  Google Scholar 

  87. Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085

    Article  CAS  Google Scholar 

  88. Sun N, Wang Y, Li Y-T, Huang J-C, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  89. Liu J, Zhong Y, Sun Z, Huang J, Sandmann G, Chen F (2010) One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 232:61–67

    Article  CAS  Google Scholar 

  90. Linden H (1999) Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim Biophys Acta 1446:203–212

    Article  CAS  Google Scholar 

  91. Huang J, Zhong Y, Sandmann G, Liu J, Chen F (2012) Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236:691–699

    Article  CAS  Google Scholar 

  92. Borkenstein CG, Knoblechner J, Fruhwirth H, Schagerl M (2011) Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23:131–135

    Article  CAS  Google Scholar 

  93. de Morais M, Costa J (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus, Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352

    Article  CAS  Google Scholar 

  94. Yewalkar S, Li B, Posarac D, Duff S (2011) Potential for CO2 fixation by Chlorella pyrenoidosa grown in oil sands tailings water. Energy Fuel 25:1900–1905

    Article  CAS  Google Scholar 

  95. Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  CAS  Google Scholar 

  96. Michiki H (1995) Biological CO2 fixation and utilization project. Energy Convers Manage 36:701–705

    Article  CAS  Google Scholar 

  97. Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by rite (2) - Screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manage 38(Supplement):S493–S497

    Article  CAS  Google Scholar 

  98. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  99. Negoro M, Shioji N, Miyamoto K, Micira Y (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol 28–29:877–886

    Article  Google Scholar 

  100. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117

    Article  CAS  Google Scholar 

  101. Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K (2013) Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour Technol 136:496–501

    Article  CAS  Google Scholar 

  102. He L, Subramanian VR, Tang YJ (2012) Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass Bioenerg 41:131–138

    Article  CAS  Google Scholar 

  103. Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol 152:225–233

    Article  CAS  Google Scholar 

  104. Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K (2013) Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour Technol 144:321–327

    Article  CAS  Google Scholar 

  105. Fallowfield HJ, Garrett MK (1985) The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study. Agr Wastes 12:111–136

    Article  CAS  Google Scholar 

  106. Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  107. Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34

    Article  CAS  Google Scholar 

  108. Yun Y-S, Lee SB, Park JM, Lee C-I, Yang J-W (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455

    Article  CAS  Google Scholar 

  109. Wang L, Min M, Li YC, Chen P, Chen YF, Liu YH, Wang YK, Ruan R (2010) Cultivation of breen algae Chlorella sp in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  Google Scholar 

  110. Aziz MA, Ng WJ (1992) Feasibility of wastewater treatment using the activated-algae process. Bioresour Technol 40:205–208

    Article  CAS  Google Scholar 

  111. Ji M-K, Kim H-C, Sapireddy V, Yun H-S, Abou-Shanab RI, Choi J, Lee W, Timmes T, Jeon Inamuddin B-H (2013) Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl Microbiol Biotechnol 97:2701–2710

    Article  CAS  Google Scholar 

  112. Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  Google Scholar 

  113. Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84:1–5

    Article  CAS  Google Scholar 

  114. Yang J, Rasa E, Tantayotai P, Scow KM, Yuan H, Hristova KR (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102:3077–3082

    Article  CAS  Google Scholar 

  115. Mallick N, Rai LC (1994) Removal of inorganic ions from wastewaters by immobilized microalgae. W J Microbiol Biotechnol 10:439–443

    Article  CAS  Google Scholar 

  116. Megharaj M, Pearson HW, Venkateswarlu K (1992) Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzyme Microb Technol 14:656–658

    Article  CAS  Google Scholar 

  117. Tam NFY, Lau PS, Wong YS (1994) Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Sci Technol 30:369–374

    CAS  Google Scholar 

  118. Mallick N, Rai LC (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. W J Microbiol Biotechnol 9:196–201

    Article  CAS  Google Scholar 

  119. Jin J, Yang LH, Chan SMN, Luan TG, Li Y, Tam NFY (2011) Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water. J Hazard Mater 185:1582–1586

    Article  CAS  Google Scholar 

  120. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  Google Scholar 

  121. Chong AMY, Wong YS, Tam NFY (2000) Performance of different microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere 41:251–257

    Article  CAS  Google Scholar 

  122. Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    Article  CAS  Google Scholar 

  123. Lau PS, Lee HY, Tsang CCK, Tam NFY, Wong YS (1999) Effect of metal interference, pH and temperature on Cu and Ni biosorption by Chlorella vulgaris and Chlorella miniata. Environ Technol 20:953–961

    Article  CAS  Google Scholar 

  124. Mehta SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metalsolutions by free and immobilized Chlorella vulgaris. Euro J Protistol 37:261–271

    Article  Google Scholar 

  125. Sandau E, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol 16:227–235

    Article  CAS  Google Scholar 

  126. Mutanda T, Karthikeyan S, Bux F (2011) The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Appl Biochem Biotechnol 164:1126–1138

    Article  CAS  Google Scholar 

  127. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  128. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  129. Liu J, Huang J, Chen F (2011a) Microalgae as feedstocks for biodiesel production. Biodiesel—Feedstocks and processing technologies. InTech, Available from http://www.intechopen.com/articles/show/title/microalgae-as-feedstocks-for-biodiesel-production

  130. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  131. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  132. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  133. Cerón-García MC, Macías-Sánchez MD, Sánchez-Mirón A, García-Camacho F, Molina-Grima E (2013) A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl Energy 103:341–349

    Article  CAS  Google Scholar 

  134. Espinosa-Gonzalez I, Parashar A, Bressler DC (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176

    Article  CAS  Google Scholar 

  135. O’Grady J, Morgan JA (2011) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst Eng 34:121–125

    Article  CAS  Google Scholar 

  136. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  137. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  Google Scholar 

  138. Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  CAS  Google Scholar 

  139. Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  CAS  Google Scholar 

  140. Bala Amutha K, Murugesan AG (2011) Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment. Bioresour Technol 102:194–199

    Article  CAS  Google Scholar 

  141. Duan P, Jin B, Xu Y, Yang Y, Bai X, Wang F, Zhang L, Miao J (2013) Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels. Bioresour Technol 133:197–205

    Article  CAS  Google Scholar 

  142. Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  CAS  Google Scholar 

  143. Ras M, Lardon L, Bruno S, Bernet N, Steyer J-P (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206

    Article  CAS  Google Scholar 

  144. Wang HY, Fan XL, Zhang YT, Yang DW, Guo RB (2011) Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion. Biotechnol Lett 33:1345–1350

    Article  CAS  Google Scholar 

  145. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  CAS  Google Scholar 

  146. Rashid N, Lee K, Mahmood Q (2011) Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Bioresour Technol 102:2101–2104

    Article  CAS  Google Scholar 

  147. Cheng Y-S, Zheng Y, Labavitch JM, Vander Gheynst JS (2013) Virus infection of Chlorella variabilis and enzymatic saccharification of algal biomass for bioethanol production. Bioresour Technol 137:326–331

    Article  CAS  Google Scholar 

  148. Zhou N, Zhang Y, Wu X, Gong X, Wang Q (2011) Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour Technol 102:10158–10161

    Article  CAS  Google Scholar 

  149. Zhang J, Chen W-T, Zhang P, Luo Z, Zhang Y (2013) Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. Bioresour Technol 133:389–397

    Article  CAS  Google Scholar 

  150. Jarvis EE, Brown LM (1991) Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 19:317–321

    Article  CAS  Google Scholar 

  151. Maruyama M, Horakova I, Honda H, Xing XH, Shiragami N, Unno H (1994) Introduction of foreign DNA into Chlorella saccharophila by electroporation. Biotechnol Tech 8:821–826

    Article  CAS  Google Scholar 

  152. Chen Y, Li W, Bai Q, Sun Y (1998) Study on transient expression of gus gene in Chlorelia ellipsoidea (Chlorophyta) by using biolistic particle delivery system. Chin J Oceanol Limn 16:47–49

    Article  Google Scholar 

  153. Wang P, Sun YR, Li X, Zhang LM, Li WB, Wang YQ (2004) Rapid isolation and functional analysis of promoter sequences of the nitrate reductase gene from Chlorella ellipsoidea. J Appl Phycol 16:11–16

    Article  Google Scholar 

  154. Wang C, Wang Y, Su Q, Gao X (2007) Transient expression of the GUS gene in a unicellular marine green alga Chlorella sp. MACC/C95, via electroporation. Biotechnol Bioprocess Eng 12:180–183

    Article  CAS  Google Scholar 

  155. Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38:335–341

    Article  CAS  Google Scholar 

  156. Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362

    Article  CAS  Google Scholar 

  157. Wang YQ, Chen Y, Zhang XY, Wang P, Geng DG, Zhao SM, Zhang LM, Sun YR (2005) Isolation and characterization of a nitrate reductase deficient mutant of Chlorella ellipsoidea (Chlorophyta). J Appl Phycol 17:281–286

    Article  CAS  Google Scholar 

  158. Huang JC, Liu J, Li YT, Chen F (2008) Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol 44:684–690

    Article  CAS  Google Scholar 

  159. Chen Y, Wang YQ, Sun YR, Zhang LM, Li WB (2001) Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet 39:365–370

    Article  CAS  Google Scholar 

  160. Han XM, Li YG, Sun XZ, Wei XD, Sun YR, Wang YQ (2005) Studies on the heterotrophic cultivation of transgenic Chlorella containing the rabbit defensin gene. Process Biochem 40:3055–3060

    Article  CAS  Google Scholar 

  161. Wang Y, Chen Y, Bai Q, Zhao S, Li W, Sun Y (2001) Using transgenic Chlorella ellipsoidea as bio-reactor to produce rabbit defensin. High Technol Lett 9:1–5

    Google Scholar 

  162. Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4:63–73

    Article  CAS  Google Scholar 

  163. Huang CC, Chen MW, Hsieh JL, Lin WH, Chen PC, Chien LF (2006) Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp DT: an approach for mercury phytoremediation. Appl Microbiol Biotechnol 72:197–205

    Article  CAS  Google Scholar 

  164. Borovsky D (2003) Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J Exp Biol 206:3869–3875

    Article  CAS  Google Scholar 

  165. Avery SV, Codd GA, Gadd GM (1992) Replacement of cellular potassium by caesium in Chlorella emersonii: differential sensitivity of photoautotrophic and chemoheterotrophic growth. J Gen Microbiol 138:69–76

    Article  CAS  Google Scholar 

  166. Oh SH, Kwon MC, Choi WY, Seo YC, Kim GB, Kang DH, Lee SY, Lee HY (2010) Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima. J Biosci Bioeng 110:194–200

    Article  CAS  Google Scholar 

  167. Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y (2011) Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl Energy 88:3295–3299

    Article  CAS  Google Scholar 

  168. Li T, Zheng Y, Yu L, Chen S (2013) High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131:60–67

    Article  CAS  Google Scholar 

  169. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  Google Scholar 

  170. Ruiz NJ, García MDCC, Mirón AS, Haftalaui EHB, Camacho FG, Grima EM (2009) Lipids accumulation in Chlorella protothecoides through mixotrophic and heterotrophic cultures for biodiesel production. New Biotechnol 25:S266–S266

    Article  Google Scholar 

  171. Rai MP, Nigam S, Sharma R (2013) Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy 58:251–257

    Article  CAS  Google Scholar 

  172. Running J, Huss R, Olson P (1994) Heterotrophic production of ascorbic acid by microalgae. J Appl Phycol 6:99–104

    Article  CAS  Google Scholar 

  173. Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis, heterotrophic fast-growing strain II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol 18:199–205

    CAS  Google Scholar 

  174. Sansawa H, Endo H (2004) Production of intracellular phytochemicals in Chlorella under heterotrophic conditions. J Biosci Bioenergy 98:437–444

    Article  CAS  Google Scholar 

  175. Herrera-Valencia V, Contreras-Pool P, López-Adrián S, Peraza-Echeverría S, Barahona-Pérez L (2011) The green microalga Chlorella saccharophila as a suitable source of oil for biodiesel production. Curr Microbiol 63:151–157

    Article  CAS  Google Scholar 

  176. Tan C, Johns M (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19

    Article  CAS  Google Scholar 

  177. Chen F, Johns M (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209

    Article  CAS  Google Scholar 

  178. Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253

    Article  CAS  Google Scholar 

  179. Zhang K, Sun B, She X, Zhao F, Cao Y, Ren D, Lu J (2014) Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: photoautotrophic, heterotrophic, and pure and mixed conditions. Ann Microbiol 64:1239–1246

    Google Scholar 

  180. Ramos Tercero EA, Sforza E, Morandini M, Bertucco A (2014) Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: Biomass productivity and nutrient removal. Appl Biochem Biotechnol 172:1470–1485

    Google Scholar 

  181. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    Article  CAS  Google Scholar 

  182. Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150:377–386

    Article  CAS  Google Scholar 

  183. Bertoldi FC, Sant’Anna E, da Costa Braga MV, Oliveira JLB (2006) Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasas Y Aceites 57:270–274

    Google Scholar 

  184. Chu W-L, See Y-C, Phang S-M (2009) Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J Appl Phycol 21:641–648

    Article  CAS  Google Scholar 

  185. Lim S-L, Chu W-L, Phang S-M (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  186. Abou-Shanab RAI, Hwang J-H, Cho Y, Min B, Jeon B-H (2011) Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl Energy 88:3300–3306

    Article  CAS  Google Scholar 

  187. Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184

    Article  CAS  Google Scholar 

  188. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  189. Feng P, Deng Z, Hu Z, Fan L (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 102:10577–10584

    Article  CAS  Google Scholar 

  190. Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  Google Scholar 

  191. Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158

    Article  CAS  Google Scholar 

  192. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioenergy 102:100–112

    Article  CAS  Google Scholar 

  193. Scarsella M, Parisi MP, D’Urso A, De Filippis P, Opoka J, Bravi M (2009) Achievements and perspectives in hetero- and mixotrophic culturing of microalgae. In: Pierucci S (ed) Icheap-9: 9th International Conference on Chemical and Process Engineering, Pts 1-3, vol 17., Chemical Engineering TransactionsAidic Servizi Srl, Milano, pp 1065–1070

    Google Scholar 

  194. Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem E 40:13–20

    Article  CAS  Google Scholar 

  195. Yeh KL, Chang JS, Chen WM (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10:201–208

    Article  CAS  Google Scholar 

  196. Wang Y, Rischer H, Eriksen NT, Wiebe MG (2013) Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresour Technol 144:608–614

    Article  CAS  Google Scholar 

  197. D’Oca MGM, Viêgas CV, Lemões JS, Miyasaki EK, Morón-Villarreyes JA, Primel EG, Abreu PC (2011) Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenerg 35:1533–1538

    Article  CAS  Google Scholar 

  198. Shekh AY, Shrivastava P, Krishnamurthi K, Mudliar SN, Devi SS, Kanade GS, Lokhande SK, Chakrabarti T (2013) Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa. Bioresour Technol 138:382–386

    Article  CAS  Google Scholar 

  199. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  200. Li Y, Yuan Z, Mu J, Chen D, Feng B (2013) Proteomic analysis of lipid accumulation in Chlorella protothecoides cells by heterotrophic N deprivation coupling cultivation. Energy Fuel 27:4031–4040

    Article  CAS  Google Scholar 

  201. Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy 108:281–287

    Article  CAS  Google Scholar 

  202. Matsumoto M, Sugiyama H, Maeda Y, Sato R, Tanaka T, Matsunaga T (2010) Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl Biochem Biotechnol 161:483–490

    Article  CAS  Google Scholar 

  203. Moazami N, Ranjbar R, Ashori A, Tangestani M, Nejad AS (2011) Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass Bioenerg 35:1935–1939

    Article  CAS  Google Scholar 

  204. Phukan MM, Chutia RS, Konwar BK, Kataki R (2011) Microalgae Chlorella as a potential bio-energy feedstock. Appl Energy 88:3307–3312

    Article  CAS  Google Scholar 

  205. Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040

    Article  CAS  Google Scholar 

  206. Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  CAS  Google Scholar 

  207. Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105

    Article  CAS  Google Scholar 

  208. Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    Article  CAS  Google Scholar 

  209. Liang G, Mo Y, Zhou Q (2013) Optimization of digested chicken manure filtrate supplementation for lipid overproduction in heterotrophic culture Chlorella protothecoides. Fuel 108:159–165

    Article  CAS  Google Scholar 

  210. Liu L, Wang Y, Zhang Y, Chen X, Zhang P, Ma S (2013) Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol Biotechnol 54:211–219

    Article  CAS  Google Scholar 

  211. El-sheekh MM (1999) Stable transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles. Biol Plantarum 42:209–216

    Article  CAS  Google Scholar 

  212. Chow KC, Tung WL (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep 18:778–780

    Article  CAS  Google Scholar 

  213. Niu Y, Zhang M, Xie W, Li J, Gao Y, Yang W, Liu J, Li H (2011) A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genet Mol Res 10:3427–3434

    Article  CAS  Google Scholar 

  214. Cha T, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779

    Article  CAS  Google Scholar 

  215. Talebi A, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami S (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40:4421–4428

    Article  CAS  Google Scholar 

  216. Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a grant from the 985 Project of Peking University, by the State Oceanic Administration of China, and by the National Research Foundation of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, J., Chen, F. (2014). Biology and Industrial Applications of Chlorella: Advances and Prospects. In: Posten, C., Feng Chen, S. (eds) Microalgae Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 153. Springer, Cham. https://doi.org/10.1007/10_2014_286

Download citation

Publish with us

Policies and ethics