Skip to main content

Origins and Motivations for Design Rules in QCA

  • Chapter
Nano, Quantum and Molecular Computing

Abstract

This chapter introduces the quantum-dot cellular automata (QCA), what constructs can be made from it, and what constructs could be implementable in the near-to-midterm. It will also explain a systems-level research component that complements work in physical science. One objective of the systems-level track is to compile a set of design rules to not only help system designers become more involved with the evolution of emergent, nano-scale devices geared for computation, but it should also help us to reach computationally interesting, nano-scale systems in an accelerated time frame. The motivations for, and the origins of design rules for QCA (and other emergent technologies) will be explained here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Blair and C. Lent. Proceedings of the nth IEEE Conference on Nanotechnology, 2003.

    Google Scholar 

  2. A. Dehon. Array-based Architectures for FET-based Nano-scale Electronics. IEEE Trans. on Nano., 2(1): 23–32, March 2003.

    MathSciNet  Google Scholar 

  3. K. Hennessy and C.S. Lent. Clocking of molecular quantum-dot cellular automata. J. of Vac. Sci. and Tech. B, 19(5):1752–1755, Sep–Oct 2001.

    Google Scholar 

  4. R.V. Kummamuru, J. Timler, G. Toth, C.S. Lent, and R. Ramasubramaniam. Power gain in a quantum-dot cellular automatalatch. Applied Physics Letters, 81(7):1332–1334, 2002.

    Article  Google Scholar 

  5. C.S. Lent, B. Isaksen, and M. Lieberman. Molecular Quantum-dot Cellular Automata. J. of the Am. Chem. Soc., 125:1056–1063, 2003.

    Google Scholar 

  6. C.S. Lent, G.L. Snider, G. Berstein, W. Porod, A. Orlov, M. Lieberman, T. Fehlner, M. Niemier, and P. Kogge. Quantum-Dot Cellular Automata. Electron Transport in Quantum Dots, 397–433, 2003.

    Google Scholar 

  7. C.S. Lent and P.D. Tougaw. A Device Architecture for Computing with Quantum Dots. Proceedings of the IEEE, 85:541, 1997.

    Article  Google Scholar 

  8. M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, and C. Lent. Quantum-dot Cellular Automata at a Molecular Scale. An. of the New York Ac. of Sci., 960:225–239, April 2002.

    Google Scholar 

  9. Personal communciations with Marya Lieberman, 2003.

    Google Scholar 

  10. C.K. Mathews, K.E. van Holde, and K.G. Ahren. Biochemistry. Addison Wesley Longman, 2000.

    Google Scholar 

  11. C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley Publishing Company, 1980.

    Google Scholar 

  12. M. Oskin, F.T. Chong, and I.L. Chaung. A Practical Architecture for Reliable Quantum Computers. IEEE Computer, January:79–87, 2002.

    Google Scholar 

  13. J.M. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice Hall Electronics, 1996.

    Google Scholar 

  14. J. Timler and C.S. Lent. Power gain and dissipation in quantum-dot cellular automata. Jounral of Applied Physics, 91(2):823–831, Jan. 15, 2002.

    Google Scholar 

  15. P.D. Tougaw and C.S. Lent. Logical Devices Implemented Using Quantum Cellular Automata. Journal of Applied Physics, 75:1818, 1994.

    Article  Google Scholar 

  16. N.H.E. Weste and K. Eshraghian. Principles of CMOS VLSI Design: A Systems Perspective. Addison-Wesley Publishing Company, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Niemier, M.T., Kogge, P.M. (2004). Origins and Motivations for Design Rules in QCA. In: Shukla, S.K., Bahar, R.I. (eds) Nano, Quantum and Molecular Computing. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8068-9_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8068-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8067-8

  • Online ISBN: 978-1-4020-8068-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics