Skip to main content

The DNA-Binding Domain of GATA Transcription Factors—A Prototypical Type IV Cys2-Cys2 Zinc Finger

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The highly conserved DNA-binding domains (DBDs) of eukaryotic GATA factors comprise one or two zinc binding modules with four cysteines embedded in the sequence Cys-X2-Cys-X17/18-Cys-X2-Cys and an adjacent basic region. The fold has been defined as a class IV zinc finger motif and belongs to the superfamily of glucocorticoid receptor-like DNA binding domains. Members of the GATA family are found in a wide range of organisms ranging from slime molds to fungi and plants to vertebrates and exhibit differing and complex roles in transcription regulation mediated by binding to regulatory DNA sequences of the form (A/T)GATA(A/G). Fungal GATA factors control nitrogen metabolism, light induction, siderophore biosynthesis and mating-type switching, while the prototypical animal factor GATA-1 is involved in the regulation of all erythroid cell-specific genes. A unique feature of the GATA DBDs is their ability to interact with DNA as well as with proteins, leading to a multitude of intricate functionalities. One important role is associated with dramatic chromatin rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orkin SH. GATA-Binding transcription factors in hematopoietic cells. Blood 1992; 80:575–581.

    PubMed  CAS  Google Scholar 

  2. Scazzocchio C. The fungal GATA factors. Curr Op Microbiol 2000; 3:126–131.

    Article  CAS  Google Scholar 

  3. Merika M, Orkin SH. DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 1993; 13:3999–4010.

    PubMed  CAS  Google Scholar 

  4. Ko LJ, Engel JD. DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol 1993; 13:4011–4022.

    PubMed  CAS  Google Scholar 

  5. Yang HY, Todd E. Distinct roles for the two cGATA-1 finger domains. Mol Cell Biol 1992; 12:4562–4570.

    PubMed  CAS  Google Scholar 

  6. Fox AH, Kowalski K, King GF et al. Key residues characteristic of GATA N-fingers are recognized by FOG. J Biol Chem 1998; 273:33595–33603.

    Article  PubMed  CAS  Google Scholar 

  7. Ballario P, Vittorioso P, Magrelli A et al. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 1996; 15:1650–1657.

    PubMed  CAS  Google Scholar 

  8. Chang WT, Newell PC, Gross JD. Identification of the cell fate gene stalky in Dictyostelium. Cell 1996; 87:471–481.

    Article  PubMed  CAS  Google Scholar 

  9. Teackle GR, Gilmartin PM. Two forms of type IV zinc-finger motif and their kingdom-specific distribution between the flora, fauna and fungi. Trends Biochem Sci 1998; 23:100–102.

    Article  Google Scholar 

  10. Omichinski JG, Clore GM, Schaad O et al. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science 1993; 261:438–446.

    Article  PubMed  CAS  Google Scholar 

  11. Starich MR, Wikström M, Arst Jr HN et al. The solution structure of a fungal AREA protein-DNA complex: An alternative binding mode for the basic carboxyl tail of GATA factors. J Mol Biol 1998; 277:605–620.

    Article  PubMed  CAS  Google Scholar 

  12. Gao X, Sedgwick T, Shi YB et al. Distinct functions are implicated for the GATA-4,-5 and-6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 1998; 18:2901–2911.

    PubMed  CAS  Google Scholar 

  13. Zhu J, Hill RJ, Heid PJ et al. end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev 1997; 11:2883–2896.

    PubMed  CAS  Google Scholar 

  14. Petersen UM, Kadalayil L, Rehorn KP et al. Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. EMBO J 1999; 18:4013–4022.

    Article  PubMed  CAS  Google Scholar 

  15. Lossky M, Wensink PC. Regulation of Drosophila yolk protein genes by an ovary-specific GATA factor. Mol Cell Biol 1995; 15:6943–6952.

    PubMed  CAS  Google Scholar 

  16. Haenlin M, Cubadda Y, Blondeau F et al. Transcriptional activity of Pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila. Genes Dev 1997; 11:3096–3108.

    PubMed  CAS  Google Scholar 

  17. Rastogi R, Bate NJ, Sivasankar S et al. Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Mol Biol 1997; 34:465–476.

    Article  PubMed  CAS  Google Scholar 

  18. Arst Jr HN, Cove DJ. Nitrogen metabolite repression in Aspergilus nidulans. Mol Gen Genet 1973; 126:111–141.

    Article  PubMed  CAS  Google Scholar 

  19. Muro-Pastor MI, Strauss J, González R et al. The GATA factor AreA isessential for chromatin remodelling in an eucaryotic bidirectional promoter. EMBO J 1999; 18:1584–1597.

    Article  PubMed  CAS  Google Scholar 

  20. Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 1997; 61:17–32.

    PubMed  CAS  Google Scholar 

  21. Xiao X, Fu Y-H, Marzluf GA. The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochem 1995; 34:8861–8868.

    Article  CAS  Google Scholar 

  22. Platt A, Langdon T, Arst Jr HN et al. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3′ untranslated region of its mRNA. EMBO J 1996; 15:2791–2801.

    PubMed  CAS  Google Scholar 

  23. Voisard C, Wang J, McEvoy JL et al. urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 1993; 13:7091–7100.

    PubMed  CAS  Google Scholar 

  24. Haas H, Zadra I, Stoffler G et al. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 1999; 274:4613–4619.

    Article  PubMed  CAS  Google Scholar 

  25. Kudla B, Caddick MX, Langdon T et al. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus, nidulans. Mutations, affecting specific gene activation alter a loop residue of a putative zinc finger. EMBO J 1990; 9:1355–1364.

    PubMed  CAS  Google Scholar 

  26. Starich MR, Wikström M, Schumacher S et al. The solution structure of the Leu22Val mutant AREA DNA binding domain complexed with a TGATAG core element defines a role for hydrophobic packing in the determination of specificity. J Mol Biol 1998; 277:621–634.

    Article  PubMed  CAS  Google Scholar 

  27. Mackay JP, Crossley M. Zinc fingers are sticking together. Trends Biochem Sc 1998; 23:1–4.

    Article  CAS  Google Scholar 

  28. Stamatoyannopoulos JA, Goodwin A, Joyce T et al. NF-E2 and GATA binding motifs are required for the formation of Dnase I hypersensitive site 4 of the human-globin locus control region. EMBO J 1995; 14:106–116.

    PubMed  CAS  Google Scholar 

  29. Boyes J, Felsenfeld G. Tissue-specific factors additively increase the probability of the all-or-none formation of a hypersensitive site. EMBO J 1996; 15:2496–2507.

    PubMed  CAS  Google Scholar 

  30. Boyes J, Omichinski J, Clark D et al. Perturbation of nucleosome structure by the erythroid transcription factor GATA-1. J Mol Biol 1998; 279:529–544.

    Article  PubMed  CAS  Google Scholar 

  31. Boyes J, Byfield P, Nakatani Y et al. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 1998; 396:594–598.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Gronenborn, A.M. (2005). The DNA-Binding Domain of GATA Transcription Factors—A Prototypical Type IV Cys2-Cys2 Zinc Finger. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_5

Download citation

Publish with us

Policies and ethics