Skip to main content

The Multiple Cellular Functions of TFIIIA

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 2134 Accesses

Abstract

Transcription factor IIIA (TFIIIA) is a single polypeptide with several distinct functions in the cell. In this chapter I will review the role of TFIIIA in transcription initiation of the 5S rRNA gene. I will also describe the model by which TFIIIA associates with the 5S rRNA itself to regulate ribosome biosynthesis and assembly. Finally, I will compare these functions of TFIIIA in various eukaryotic cells, from yeast to vertebrate. In all cases, the part played by the protein’s zinc fingers will be emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Snyder M, Gerstein M. Defining Genes in the Genomics Era. Science 2003; 300:258–260.

    Article  PubMed  CAS  Google Scholar 

  2. Pennisi E. Gene Counters Struggle to Get the Answer Right. Science 2003; 301:1040–1041.

    Article  PubMed  CAS  Google Scholar 

  3. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860–921.

    Article  PubMed  CAS  Google Scholar 

  4. Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 2001; 291:1304–1351.

    Article  PubMed  CAS  Google Scholar 

  5. Adams MD, Celniker SE, Holt RA et al. The genome sequence of Drosophila melanogaster. Science 2000; 287:2185–2195.

    Article  PubMed  Google Scholar 

  6. Ruvkun G, Hobert O. The taxonomy of developmental control in Caenorhabditis elegans. Science 1998; 282:2033–2041.

    Article  PubMed  CAS  Google Scholar 

  7. Levine M, Tjian R. Transcription regulation and animal diversity. Nature 2003; 424:147–151.

    Article  PubMed  CAS  Google Scholar 

  8. Pieler T, Theunissen O. TFIIIA: nine fingers-three hands? Trends Biochem Sci 1993; 18:226–230.

    Article  PubMed  CAS  Google Scholar 

  9. Cassiday LA, Maher LJ 3rd. Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 2002; 30:4118–4126.

    Article  PubMed  CAS  Google Scholar 

  10. Engelke DR, Ng S-Y, Shastry BS et al. Specific Interaction of a Purified Transcription Factor with an Internal Control Region of 5S RNA Genes. Cell 1980; 19:717–728.

    Article  PubMed  CAS  Google Scholar 

  11. Pelham HRB, Brown DD. A specific transcription factor that can bind either the 5S rRNA gene or 5S RNA. Proc Natl Acad Sci USA 1980; 77:4170–4174.

    Article  PubMed  CAS  Google Scholar 

  12. Wuttke DS, Foster MP, Case DA et al. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity. J Mol Biol 1997; 273:183–206.

    Article  PubMed  CAS  Google Scholar 

  13. Foster MP, Wuttke DS, Radhakrishnan I et al. Domain packing and dynamics in the DNA complex of the N-terminal zinc fingers of TFIIIA. Nat Struct Biol 1997; 4:605–608.

    Article  PubMed  CAS  Google Scholar 

  14. Nolte RT, Conlin RM, Harrison SC et al. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc Natl Acad Sci USA 1998; 95:2938–2943.

    Article  PubMed  CAS  Google Scholar 

  15. Brown RS. TFIIIA: A Sophisticated Zinc Finger Protein. In Iuchi, S and Kuldell N, eds. Zinc Finger Proteins: from atomic contacts to... Landes Bioscience, 2004: pgs XXX.

    Google Scholar 

  16. Theunissen O, Rudt F, Guddat U et al. RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell 1992; 71:679–690

    Article  PubMed  CAS  Google Scholar 

  17. Mao X and Darby MK. A position-dependent transcription-activating domain in TFIIIA. Mol Cell Biol 1993; 13:7496–7506.

    PubMed  CAS  Google Scholar 

  18. Moreland RJ, Dresser ME, Rodgers JS et al. Identification of a transcription factor IIIA-interacting protein. Nucleic Acids Res 2000; 28:1986–1993.

    Article  PubMed  CAS  Google Scholar 

  19. Schulman DB, Setzer DR. Functional analysis of the novel C-terminal domains of S pombe transcription factor IIIA. J Mol Biol 2003; 331:321–330.

    Article  PubMed  CAS  Google Scholar 

  20. Paule MR, White RJ. Transcription by RNA polymerases I and III. Nucleic Acids Res 2000; 28:1283–1298.

    Article  PubMed  CAS  Google Scholar 

  21. Del Rio S, Menezes SR, Setzer DR. The function of individual zinc fingers in sequence-specific DNA recognition by transcription factor IIIA. J Mol Biol 1993; 233:567–579.

    Article  PubMed  Google Scholar 

  22. Veldhoen N, You Q, Setzer DR et al. Contribution of individual base pairs to the interaction of TFIIIA with the Xenopus 5S RNA gene. Biochemistry 1994; 33:7568–7575.

    Article  PubMed  CAS  Google Scholar 

  23. Hanas JS, Bogenhagen DF, Wu CW. Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene. Proc Natl Acad Sci USA 1983; 80:2142–2145.

    Article  PubMed  CAS  Google Scholar 

  24. Braun BR, Bartholomew B, Kassavetis GA et al. Topography of transcription factor complexes on the Saccharomyces cerevisiae 5 S RNA gene. J Mol Biol 1992; 228:1063–1077.

    Article  PubMed  CAS  Google Scholar 

  25. Kassavetis GA, Braun BR, Nguyen LH et al. TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 1990; 60:235–245.

    Article  PubMed  CAS  Google Scholar 

  26. Kassavetis GA, Joazeiro CA, Pisano M et al. The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 1992; 71:1055–1064.

    Article  PubMed  CAS  Google Scholar 

  27. Bogenhagen DF, Wormington WM, Brown DD. Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. Cell 1982; 28:413–421.

    Article  PubMed  CAS  Google Scholar 

  28. Engelke DR, Gottesfeld JM. Chromosomal footprinting of transcriptionally active and inactive oocyte-type 5S RNA genes of Xenopus laevis. Nucleic Acids Res 1990; 18:6031–6037.

    Article  PubMed  CAS  Google Scholar 

  29. Bardeleben C, Kassavetis GA, Geiduschek EP. Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation. J Mol Biol 1994; 235:1193–1205.

    Article  PubMed  CAS  Google Scholar 

  30. Weser S, Riemann J, Seifart KH et al. Assembly and isolation of intermediate steps of transcription complexes formed on the human 5S rRNA gene. Nucleic Acids Res 2003; 31:2408–2416.

    Article  PubMed  CAS  Google Scholar 

  31. Wolffe AP, Brown DD. Developmental regulation of two 5S ribosomal RNA genes. Science 1988; 241:1626–1632.

    Article  PubMed  CAS  Google Scholar 

  32. Hansen JC, Wolffe AP. A role for histones H2A/H2B in chromatin folding and transcriptional repression. Proc Natl Acad Sci U S A 1994; 91:2339–2343.

    Article  PubMed  CAS  Google Scholar 

  33. Hansen JC, Wolffe AP. Influence of chromatin folding on transcription initiation and elongation by RNA polymerase III. Biochemistry 1992; 31:7977–7988.

    Article  PubMed  CAS  Google Scholar 

  34. Hayes JJ, Wolffe AP. Histone H2A/H2B inhibit the interaction of TFIIIA with a nucleosome including the Xenopus borealis somatic 5S RNA gene. Proc Natl Acad Sci USA 1992; 89:1229–1233.

    Article  PubMed  CAS  Google Scholar 

  35. Tremethick D, Zucker K, Worcel A. The transcription complex of the 5 S RNA gene, but not transcription factor IIIA alone, prevents nucleosomal repression of transcription. J Biol Chem 1990; 265:5014–5023.

    PubMed  CAS  Google Scholar 

  36. Tse C, Fletcher TM, Hansen JC. Enhanced transcription factor access to arrays of histone H3/H4 tetramer:DNA complexes in vitro: implications for replication and transcription. Proc Natl Acad Sci USA 1998; 95:12169–12173.

    Article  PubMed  CAS  Google Scholar 

  37. Vitolo JM, Thiriet C, Hayes JJ. The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol Cell Biol 2000; 20:2167–2175.

    Article  PubMed  CAS  Google Scholar 

  38. Yang Z, Hayes JJ. Xenopus transcription factor IIIA and the 5S nucleosome: development of a useful in vitro system. Biochem Cell Biol 2003; 81:177–184.

    Article  PubMed  CAS  Google Scholar 

  39. Romaniuk PJ. TFIIIA and p43: Binding to 5S Ribosomal RNA. In: Iuchi S, Kuldell N, eds. Zinc Finger Proteins: From Atomic Contacts to Cellular Function. Landes Bioscience and Kluwer Academic Press, 2004.

    Google Scholar 

  40. Setzer DR, Menezes SR, Del Rio S et al. Functional interactions between the zinc fingers of Xenopus transcription factor IIIA during 5S rRNA binding. RNA 1996; 2:1254–1269.

    PubMed  CAS  Google Scholar 

  41. Rollins MB, Del Rio S, Galey AL et al. Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos. Mol Cell Biol 1993; 13:4776–4783.

    PubMed  CAS  Google Scholar 

  42. Hanas JS, Hocker JR, Cheng Y-G et al. cDNA cloning, DNA binding, and evolution of mammalian transcription factor IIIA. Gene 2002; 282:43–52.

    Article  PubMed  CAS  Google Scholar 

  43. Fridell RA, Fischer U, Luhrmann R et al. Amphibian transcription factor IIIA proteins contain a sequence element functionally equivalent to the nuclear export signal of human immunodeficiency virus type 1 Rev. Proc Natl Acad Sci USA 1996; 93:2936–2940.

    Article  PubMed  CAS  Google Scholar 

  44. You QM, Romaniuk PJ. The effects of disrupting 5S RNA helical structures on the binding of Xenopus transcription factor IIIA. Nucleic Acids Res 1990; 18:5055–5062.

    Article  PubMed  CAS  Google Scholar 

  45. Theunissen O, Rudt F, Pieler T. Structural determinants in 5S RNA and TFIIIA for 7S RNP formation. Eur J Biochem. 1998;258:758–767.

    Article  PubMed  CAS  Google Scholar 

  46. Searles MA, Lu D, Klug A. The role of the central zinc fingers of transcription factor IIIA in binding to 5 S RNA. J Mol Biol 2000; 301:47–60.

    Article  PubMed  CAS  Google Scholar 

  47. Lu D. Searles MA, Klug A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 2003; 426:96–100.

    Article  PubMed  CAS  Google Scholar 

  48. You QM, Veldhoen N, Baudin F et al. Mutations in 5S DNA and 5S RNA have different effects on the binding of Xenopus transcription factor IIIA. Biochemistry 1991; 30:2495–2500.

    Article  PubMed  CAS  Google Scholar 

  49. Bumbulis MJ, Wroblewski G, McKean D et al. Genetic analysis of Xenopus transcription factor IIIA. J Mol Biol 1998; 284:1307–1322.

    Article  PubMed  CAS  Google Scholar 

  50. Darby MK and Joho KE. Differential binding of zinc fingers from Xenopus IIIA and p43 to 5S RNA and the 5S RNA gene. Mol Cell Biol 1992; 12:3155–3164.

    PubMed  CAS  Google Scholar 

  51. Guddat U, Bakken AH, Pieler T. Protein-mediated nuclear export of RNA: 5S rRNA containing small RNPs in xenopus oocytes. Cell 1990; 60:619–628.

    Article  PubMed  CAS  Google Scholar 

  52. Scripture JB, Huber PW. Analysis of the binding of Xenopus ribosomal protein L5 to oocyte 5 S rRNA. The major determinants of recognition are located in helix III-loop C. J Biol Chem 1995; 270:27358–27365.

    Article  PubMed  CAS  Google Scholar 

  53. Deshmukh M, Stark J, Yeh L-C C et al. Multiple Regions of Yeast Ribosomal Protein L1 are Important for its Interaction with 5S rRNA and Assembly into Ribosomes. J Biol Chem 1995; 270:30148–30156.

    Article  PubMed  CAS  Google Scholar 

  54. Pittman RH, Andrews MT, Setzer DR. A feedback loop coupling 5 S rRNA synthesis to accumulation of a ribosomal protein. J Biol Chem 1999; 274:33198–33201.

    Article  PubMed  CAS  Google Scholar 

  55. Rudt F, Pieler T. Cytoplasmic retention and nuclear import of 5S ribosomal RNA containing RNPs. EMBO J 1996; 15:1383–1391.

    PubMed  CAS  Google Scholar 

  56. Andrews MT, Brown DD. Transient activation of oocyte 5S RNA genes in Xenopus embryos by raising the level of the trans-acting factor TFIIIA. Cell 1987; 51:445–453.

    Article  PubMed  CAS  Google Scholar 

  57. Westmark CJ, Ghose R, Huber PW. Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2. Biochem J 2002; 362:375–382.

    Article  PubMed  CAS  Google Scholar 

  58. Kandror KV, Stepanov AS. RNA-binding protein kinase from amphibian oocytes is a casein kinase II. FEBS Lett 1984; 170:33–37.

    Article  PubMed  CAS  Google Scholar 

  59. Stepanov AS, Kandror KV, Elizarov SM. Protein kinase activity in RNA-binding proteins of Amphibia oocytes. FEBS Lett 1982; 141:157–160.

    Article  PubMed  CAS  Google Scholar 

  60. Bieker JJ, Roeder RG. Physical properties and DNA-binding stoichiometry of a 5 S gene-specific transcription factor. J Biol Chem 1984; 259:6158–6164.

    PubMed  CAS  Google Scholar 

  61. Kim JM, Cha JY, Marshak DR et al. Interaction of the beta subunit of casein kinase II with the ribosomal protein L5. Biochem Biophys Res Commun 1996; 226:180–186.

    Article  PubMed  CAS  Google Scholar 

  62. Park JW, Bae YS. Phosphorylation of ribosomal protein L5 by protein kinase CKII decreases its 5S rRNA binding activity. Biochem Biophys Res Commun 1999; 263:475–481.

    Article  PubMed  CAS  Google Scholar 

  63. Hazuda DJ, Wu CW. DNA-activated ATPase activity associated with Xenopus transcription factor A. J Biol Chem 1986; 261:12202–12208.

    PubMed  CAS  Google Scholar 

  64. Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675–2690.

    Article  PubMed  CAS  Google Scholar 

  65. Mathieu O, Yukawa Y, Prieto JL et al. Identification and characterization of transcription factor IIIA and ribosomal protein L5 from Arabidopsis thaliana. Nucleic Acids Res 2003; 31:2424–2433.

    Article  PubMed  CAS  Google Scholar 

  66. Kwon Y and Smerdon MJ Binding of Zinc Finger Protein TFIIIA to its Cognate DNA Sequence with Single UV Photoproducts at Specific Sites and its Effect on DNA Repair J Biol Chem 2003;278:45451–45459.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Kuldell, N. (2005). The Multiple Cellular Functions of TFIIIA. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_26

Download citation

Publish with us

Policies and ethics