Skip to main content

RING Finger-B Box-Coiled Coil (RBCC) Proteins As Ubiquitin Ligase in the Control of Protein Degradation and Gene Regulation

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The protein family harboring the RING finger motif, defined as a linear array of conserved cysteines and histidines, has grown enormously in the last decade. The members of the family are involved in various biological processes including growth, differentiation, apoptosis, transcription and also in diseases and oncogenesis. It has been postulated that the RING finger domains have crucial roles in these phenomena themselves, in some cases, working with other domains in other proteins, although the precise mechanisms and common features of RING finger function have not been fully elucidated. However, most recently, an accumulating body of evidence has revealed that some of the RING finger proteins work as E3 ubiquitin ligases in ubiquitin-mediated specific protein degradation pathway. In this review, we focus on the RING finger protein with special reference to E3 ligase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freemont PS, Hanson IM, Trowsdale J. A novel cysteine-rich sequence motif. Cell 1991; 64(3):483–484.

    Article  PubMed  CAS  Google Scholar 

  2. Lovering R, Hanson IM, Borden KL et al. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 1993; 90(6):2112–2116.

    Article  PubMed  CAS  Google Scholar 

  3. Borden KL, Boddy MN, Lally J et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 1995; 14(7):1532–1541.

    PubMed  CAS  Google Scholar 

  4. Barlow PN, Luisi B, Milner A et al. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J Mol Biol 1994; 237(2):201–211.

    Article  PubMed  CAS  Google Scholar 

  5. Bellon SF, Rodgers KK, Schatz DG et al. Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nat Struct Biol 1997; 4(7):586–591.

    Article  PubMed  CAS  Google Scholar 

  6. Gervais V, Busso D, Wasielewski E et al. Solution structure of the N-terminal domain of the human TFIIH MAT1 subunit: New insights into the RING finger family. J Biol Chem 2001; 276(10):7457–7464.

    Article  PubMed  CAS  Google Scholar 

  7. Zheng N, Wang P, Jeffrey PD et al. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 2000; 102(4):533–539.

    Article  PubMed  CAS  Google Scholar 

  8. Freemont PS. The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci 1993; 684:174–192.

    Article  PubMed  CAS  Google Scholar 

  9. Saurin AJ, Borden KL, Boddy MN et al. Does this have a familiar RING? Trends Biochem Sci 1996; 21(6):208–214.

    Article  PubMed  CAS  Google Scholar 

  10. Takeuchi M, Rothe M, Goeddel DV. Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins. J Biol Chem 1996; 271(33):19935–19942.

    Article  PubMed  CAS  Google Scholar 

  11. Sato T, Irie S, Reed JC. A novel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40. FEBS Lett 1995; 358(2):113–118.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng G, Cleary AM, Ye ZS et al. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 1995; 267(5203):1494–1498.

    Article  PubMed  CAS  Google Scholar 

  13. Rothe M, Sarma V, Dixit VM et al. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 1995; 269(5229):1424–1427.

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi R, Deveraux Q, Tamm I et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 1998; 273(14):7787–7790.

    Article  PubMed  CAS  Google Scholar 

  15. Liston P, Fong WG, Kelly NL et al. Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol 2001; 3(2):128–133.

    Article  PubMed  CAS  Google Scholar 

  16. Yang Y, Fang S, Jensen JP et al. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000; 288(5467):874–877.

    Article  PubMed  CAS  Google Scholar 

  17. Clem RJ, Miller LK. Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 1994; 14(8):5212–5222.

    PubMed  CAS  Google Scholar 

  18. van der Reijden BA, Erpelinck-Verschueren CA, Lowenberg B et al. TRIADs: A new class of proteins with a novel cysteine-rich signature. Protein Sci 1999; 8(7):1557–1561.

    Article  PubMed  Google Scholar 

  19. Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392(6676):605–608.

    Article  PubMed  CAS  Google Scholar 

  20. Morett E, Bork P. A novel transactivation domain in parkin. Trends Biochem Sci 1999; 24(6):229–231.

    Article  PubMed  CAS  Google Scholar 

  21. Imai Y, Soda M, Inoue H et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105(7):891–902.

    Article  PubMed  CAS  Google Scholar 

  22. Imai Y, Soda M, Hatakeyama S et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol Cell 2002; 10(1):55–67.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, Gao J, Chung KK et al. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 2000; 97(24):13354–13359.

    Article  PubMed  CAS  Google Scholar 

  24. Reddy BA, Etkin LD, Freemont PS. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 1992; 17(9):344–345.

    Article  PubMed  CAS  Google Scholar 

  25. Kakizuka A, Miller Jr WH, Umesono K et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66(4):663–674.

    Article  PubMed  CAS  Google Scholar 

  26. de The H, Lavau C, Marchio A et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66(4):675–684.

    Article  PubMed  Google Scholar 

  27. Goddard AD, Borrow J, Freemont PS et al. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 1991; 254(5036):1371–1374.

    Article  PubMed  CAS  Google Scholar 

  28. Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266(5182):66–71.

    Article  PubMed  CAS  Google Scholar 

  29. Le Douarin B, Zechel C, Garnier JM et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 1995; 14(9):2020–2033.

    PubMed  Google Scholar 

  30. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67:425–479.

    Article  PubMed  CAS  Google Scholar 

  31. Joazeiro CA, Wing SS, Huang H et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999; 286(5438):309–312.

    Article  PubMed  CAS  Google Scholar 

  32. Lorick KL, Jensen JP, Fang S et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999; 96(20):11364–11369.

    Article  PubMed  CAS  Google Scholar 

  33. Urano T, Saito T, Tsukui T et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 2002; 417(6891):871–875.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Y, Xiong Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ 2001; 12(4):175–186.

    PubMed  CAS  Google Scholar 

  35. Seol JH, Feldman RM, Zachariae W et al. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 1999; 13(12):1614–1626.

    PubMed  CAS  Google Scholar 

  36. Galisteo ML, Dikic I, Batzer AG et al. Tyrosine phosphorylation of the c-cbl proto-oncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J Biol Chem 1995; 270(35):20242–20245.

    Article  PubMed  CAS  Google Scholar 

  37. Thien CB, Walker F, Langdon WY. RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol Cell 2001; 7(2):355–365.

    Article  PubMed  CAS  Google Scholar 

  38. Haupt Y, Maya R, Kazaz A et al. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387(6630):296–299.

    Article  PubMed  CAS  Google Scholar 

  39. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387(6630):299–303.

    Article  PubMed  CAS  Google Scholar 

  40. Geyer RK, Yu ZK, Maki CG. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol 2000; 2(9):569–573.

    Article  PubMed  CAS  Google Scholar 

  41. Chen Y, Chen CF, Riley DJ et al. Aberrant subcellular localization of BRCA1 in breast cancer. Science 1995; 270(5237):789–791.

    Article  PubMed  CAS  Google Scholar 

  42. Lupas A. Coiled coils: New structures and new functions. Trends Biochem Sci 1996; 21(10):375–382.

    Article  PubMed  CAS  Google Scholar 

  43. Reymond A, Meroni G, Fantozzi A et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20(9):2140–2151.

    Article  PubMed  CAS  Google Scholar 

  44. Tissot C, Mechti N. Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J Biol Chem 1995; 270(25):14891–14898.

    Article  PubMed  CAS  Google Scholar 

  45. Der SD, Zhou A, Williams BR et al. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 1998; 95(26):15623–15628.

    Article  PubMed  CAS  Google Scholar 

  46. Orimo A, Tominaga N, Yoshimura K et al. Molecular cloning of ring finger protein 21 (RNF21)/interferon-responsive finger protein (ifp1), which possesses two RING-B box-coiled coil domains in tandem. Genomics 2000; 69(1):143–149.

    Article  PubMed  CAS  Google Scholar 

  47. Slack FJ, Ruvkun G. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem Sci 1998; 23(12):474–475.

    Article  PubMed  CAS  Google Scholar 

  48. Lu Z, Xu S, Joazeiro C et al. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 2002; 9(5):945–956.

    Article  PubMed  CAS  Google Scholar 

  49. Dhalluin C, Carlson JE, Zeng L et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999; 399(6735):491–496.

    Article  PubMed  CAS  Google Scholar 

  50. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell 1997; 90(4):797–807.

    Article  Google Scholar 

  51. Quaderi NA, Schweiger S, Gaudenz K et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 1997; 17(3):285–291.

    Article  PubMed  CAS  Google Scholar 

  52. Avela K, Lipsanen-Nyman M, Idanheimo N et al. Gene encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism. Nat Genet 2000; 25(3):298–301.

    Article  PubMed  CAS  Google Scholar 

  53. Cao T, Borden KL, Freemont PS et al. Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J Cell Sci 1997; 110(Pt 14):1563–1571.

    PubMed  CAS  Google Scholar 

  54. Shimono Y, Murakami H, Hasegawa Y et al. RET finger protein is a transcriptional repressor and interacts with enhancer of polycomb that has dual transcriptional functions. J Biol Chem 2000; 275(50):39411–39419.

    Article  PubMed  CAS  Google Scholar 

  55. Cao T, Duprez E, Borden KL et al. Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J Cell Sci 1998; 111(Pt 10):1319–1329.

    PubMed  CAS  Google Scholar 

  56. Trockenbacher A, Suckow V, Foerster J et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 2001; 29(3):287–294.

    Article  PubMed  CAS  Google Scholar 

  57. Peng H, Begg GE, Schultz DC et al. Reconstitution of the KRAB-KAP-1 repressor complex: A model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol 2000; 295(5):1139–1162.

    Article  PubMed  CAS  Google Scholar 

  58. Inoue S, Orimo A, Hosoi T et al. Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc Natl Acad Sci USA 1993; 90(23):11117–11121.

    Article  PubMed  CAS  Google Scholar 

  59. Orimo A, Inoue S, Ikeda K et al. Molecular cloning, structure, and expression of mouse estrogen-responsive finger protein Efp. Colocalization with estrogen receptor mRNA in target organs. J Biol Chem 1995; 270(41):24406–24413.

    Article  PubMed  CAS  Google Scholar 

  60. Ikeda K, Orimo A, Higashi Y et al. Efp as a primary estrogen-responsive gene in human breast cancer. FEBS Lett 2000; 472(1):9–13.

    Article  PubMed  CAS  Google Scholar 

  61. Orimo A, Inoue S, Minowa O et al. Underdeveloped uterus and reduced estrogen responsiveness in mice with disruption of the estrogen-responsive finger protein gene, which is a direct target of estrogen receptor alpha. Proc Natl Acad Sci USA 1999; 96(21):12027–12032.

    Article  PubMed  CAS  Google Scholar 

  62. Opitz JM. G syndrome (hypertelorism with esophageal abnormality and hypospadias, or hypospadias-dysphagia, or “Opitz-Frias” or “Opitz-G” syndrome)—perspective in 1987 and bibliography. Am J Med Genet 1987; 28(2):275–285.

    Article  PubMed  CAS  Google Scholar 

  63. Robin NH, Opitz JM, Muenke M. Opitz G/BBB syndrome: Clinical comparisons of families linked to Xp22 and 22q, and a review of the literature. Am J Med Genet 1996; 62(3):305–317.

    Article  PubMed  CAS  Google Scholar 

  64. Gaudenz K, Roessler E, Quaderi N et al. Opitz G/BBB syndrome in Xp22: Mutations in the MID1 gene cluster in the carboxy-terminal domain. Am J Hum Genet 1998; 63(3):703–710.

    Article  PubMed  CAS  Google Scholar 

  65. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001; 27(3):286–291.

    Article  PubMed  CAS  Google Scholar 

  66. Cainarca S, Messali S, Ballabio A et al. Functional characterization of the Opitz syndrome gene product (midin): Evidence for homodimerization and association with microtubules throughout the cell cycle. Hum Mol Genet 1999; 8(8):1387–1396.

    Article  PubMed  CAS  Google Scholar 

  67. Short KM, Hopwood B, Yi Z et al. MID1 and MID2 homo-and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: Implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biol 2002; 3(1):1.

    Article  PubMed  Google Scholar 

  68. Borden KL. RING fingers and B-boxes: Zinc-binding protein-protein interaction domains. Biochem Cell Biol 1998; 76(2–3):351–358.

    Article  PubMed  CAS  Google Scholar 

  69. Kastner P, Perez A, Lutz Y et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): Structural similarities with a new family of oncoproteins. EMBO J 1992; 11(2):629–642.

    PubMed  CAS  Google Scholar 

  70. Grignani F, Ferrucci PF, Testa U et al. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74(3):423–431.

    Article  PubMed  CAS  Google Scholar 

  71. Grignani F, Testa U, Rogaia D et al. Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J 1996; 15(18):4949–4958.

    PubMed  CAS  Google Scholar 

  72. Weis K, Rambaud S, Lavau C et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994; 76(2):345–356.

    Article  PubMed  CAS  Google Scholar 

  73. Koken MH, Puvion-Dutilleul F, Guillemin MC et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 1994; 13(5):1073–1083.

    PubMed  CAS  Google Scholar 

  74. Dyck JA, Maul GG, Miller Jr WH et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 1994; 76(2):333–343.

    Article  PubMed  CAS  Google Scholar 

  75. Szostecki C, Guldner HH, Netter HJ et al. Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J Immunol 1990; 145(12):4338–4347.

    PubMed  CAS  Google Scholar 

  76. Koken MH, Reid A, Quignon F et al. Leukemia-associated retinoic acid receptor alpha fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proc Natl Acad Sci USA 1997; 94(19):10255–10260.

    Article  PubMed  CAS  Google Scholar 

  77. Chen Z, Brand NJ, Chen A et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 1993; 12(3):1161–1167.

    PubMed  CAS  Google Scholar 

  78. Ishov AM, Maul GG. The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 1996; 134(4):815–826.

    Article  PubMed  CAS  Google Scholar 

  79. Kamitani T, Nguyen HP, Kito K et al. Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J Biol Chem 1998; 273(6):3117–3120.

    Article  PubMed  CAS  Google Scholar 

  80. Fagioli M, Alcalay M, Tomassoni L et al. Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 1998; 16(22):2905–2913.

    Article  PubMed  CAS  Google Scholar 

  81. Mu ZM, Chin KV, Liu JH et al. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 1994; 14(10):6858–6867.

    PubMed  CAS  Google Scholar 

  82. Regad T, Saib A, Lallemand-Breitenbach V et al. PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO J 2001; 20(13):3495–3505.

    Article  PubMed  CAS  Google Scholar 

  83. Kamitani T, Kito K, Nguyen HP et al. Identification of three major sentrinization sites in PML. J Biol Chem 1998; 273(41):26675–26682.

    Article  PubMed  CAS  Google Scholar 

  84. Borden KL, Lally JM, Martin SR et al. In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci USA 1996; 93(4):1601–1606.

    Article  PubMed  CAS  Google Scholar 

  85. Lallemand-Breitenbach V, Zhu J, Puvion F et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 2001; 193(12):1361–1371.

    Article  PubMed  CAS  Google Scholar 

  86. Le XF, Yang P, Chang KS. Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. J Biol Chem 1996; 271(1):130–135.

    Article  PubMed  CAS  Google Scholar 

  87. Chen XP, Losman JA, Rothman P. SOCS proteins, regulators of intracellular signaling. Immunity 2000; 13(3):287–290.

    Article  PubMed  CAS  Google Scholar 

  88. Haque SJ, Harbor PC, Williams BR. Identification of critical residues required for suppressor of cytokine signaling-specific regulation of interleukin-4 signaling. J Biol Chem 2000; 275(34):26500–26506.

    Article  PubMed  CAS  Google Scholar 

  89. Terstegen L, Maassen BG, Radtke S et al. Differential inhibition of IL-6-type cytokine-induced STAT activation by PMA. FEBS Lett 2000; 478(1–2):100–104.

    Article  PubMed  CAS  Google Scholar 

  90. Toniato E, Chen XP, Losman J et al. TRIM8/GERP RING finger protein interacts with SOCS-1. J Biol Chem 2002; 277(40):37315–37322.

    Article  PubMed  CAS  Google Scholar 

  91. Niikura T, Hashimoto Y, Tajima H et al. A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci 2003; 17(6):1150–1158.

    Article  PubMed  Google Scholar 

  92. Guo B, Zhai D, Cabezas E et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 2003; 423(6938):456–461.

    Article  PubMed  CAS  Google Scholar 

  93. Sibilia J. Ro(SS-A) and anti-Ro(SS-A): An update. Rev Rhum Engl Ed 1998; 65(1):45–57.

    PubMed  CAS  Google Scholar 

  94. Itoh Y, Reichlin M. Autoantibodies to the Ro/SSA antigen are conformation dependent. I: Anti-60 kD antibodies are mainly directed to the native protein; anti-52 kD antibodies are mainly directed to the denatured protein. Autoimmunity 1992; 14(1):57–65.

    PubMed  CAS  Google Scholar 

  95. Billaut-Mulot O, Cocude C, Kolesnitchenko V et al. SS-56, a novel cellular target of autoantibody responses in Sjogren syndrome and systemic lupus erythematosus. J Clin Invest 2001; 108(6):861–869.

    Article  PubMed  CAS  Google Scholar 

  96. Fukuda-Kamitani T, Kamitani T. Ubiquitination of Ro52 autoantigen. Biochem Biophys Res Commun 2002; 295(4):774–778.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Muramatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Ikeda, K., Inoue, S., Muramatsu, M. (2005). RING Finger-B Box-Coiled Coil (RBCC) Proteins As Ubiquitin Ligase in the Control of Protein Degradation and Gene Regulation. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_16

Download citation

Publish with us

Policies and ethics