Skip to main content

TFIIIA and p43: Binding to 5S Ribosomal RNA

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 2143 Accesses

Abstract

TFIIIA and p43 are multifunctional zinc finger proteins that share a specific affinity for 5S ribosomal RNA. In this chapter I summarize over 25 years of research that highlights the similarities and differences in the RNA binding activity of these two proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denis H, le Maire M. Thesaurisomes, a novel kind of nucleoprotein particle. Subcell Biochem 1983; 9:263–297.

    PubMed  CAS  Google Scholar 

  2. Ford PJ. Noncoordinated accumulation and synthesis of 5S ribonucleic acid by ovaries of Xenopus laevis. Nature 1971; 233:561–564.

    Article  PubMed  CAS  Google Scholar 

  3. Picard B, Wegnez M. Isolation of a 7S particle from Xenopus laevis oocytes: A 5S RNA-protein complex. Proc Natl Acad Sci USA 1979; 76:241–245.

    Article  PubMed  CAS  Google Scholar 

  4. Denis H, Mairy M. Recherches biochimiques sur l’oogenese. Eur J Biochem 1972; 25:524–534.

    Article  PubMed  CAS  Google Scholar 

  5. Honda BM, Roeder RG. Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 1980; 22:119–126.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor W, Jackson IJ, Siegel N et al. The developmental expression of the gene for TFIIIA in Xenopus laevis. Nucl Acids Res 1986; 14:6185–6195.

    Article  PubMed  CAS  Google Scholar 

  7. Shastry BS, Honda BM, Roeder RG. Altered levels of a 5S gene-specific transcription factor (TFIIIA) during oogenesis and embryonic development of Xenopus laevis. J Biol Chem 1984; 259:11373–11382.

    PubMed  CAS  Google Scholar 

  8. Pelham HRB, Wormington WM, Brown DD. Related 5S RNA transcription factors in Xenopus oocytes and somatic cells. Proc Natl Acad Sci USA 1981; 78:1760–1764.

    Article  PubMed  CAS  Google Scholar 

  9. Rollins MB, Del Rio S, Galey AL et al. Role of TFIIIA zinc fingers in vivo-analysis of single-finger function in developing Xenopus embryos. Mol Cell Biol 1993; 13:4776–4783.

    PubMed  CAS  Google Scholar 

  10. Pittman RH, Andrews MT, Setzer DR. A feedback loop coupling 5S rRNA synthesis to accumulation of a ribosomal protein. J Biol Chem 1999; 274:33198–33201.

    Article  PubMed  CAS  Google Scholar 

  11. Andrews MT, Brown DD. Transient activation of oocyte 5S RNA genes in Xenopus embryos by raising the level of the trans-acting factor TFIIIA. Cell 1987; 51:445–453.

    Article  PubMed  CAS  Google Scholar 

  12. Mattaj IW, Lienhard S, Zeller R et al. Nuclear exclusion of transcription factor IIIA and the 42S particle transfer RNA-binding protein in Xenopus oocytes: A possible mechanism for gene control? J Cell Biol 1983; 97:1261–1265.

    Article  PubMed  CAS  Google Scholar 

  13. Guddat U, Bakken AH, Pieler T. Protein-mediated nuclear export of RNA: 5S rRNA containing small RNPs in Xenopus oocytes. Cell 1990; 60:619–628.

    Article  PubMed  CAS  Google Scholar 

  14. Picard B, le Maire M, Wegnez M et al. Biochemical research on oogenesis. Composition of the 42-S storage particles of Xenopus laevis oocytes. Eur J Biochem 1980; 109:359–368.

    Article  PubMed  CAS  Google Scholar 

  15. Viel A, Djé MK, Mazabraud A et al. Thesaurin a, the major protein of Xenopus laevis previtellogenic oocytes, present in the 42 S particles, is homologous to elongation factor EF-1 alpha. FEBS Lett 1987; 223:232–236.

    Article  PubMed  CAS  Google Scholar 

  16. Viel A, Le Maire M, Philippe H et al. Structural and functional properties of thesaurin a (42Sp50), the major protein of the 42-S particles present in Xenopus laevis previtellogenic oocytes. J Biol Chem 1991; 266:10392–10399.

    PubMed  CAS  Google Scholar 

  17. Joho KE, Darby MK, Crawford ET et al. A finger protein structurally similar to TFIIIA that binds exclusively to 5S RNA in Xenopus. Cell 1990; 61:293–300.

    Article  PubMed  CAS  Google Scholar 

  18. Kloetzel P-M, Whitfield W, Sommerville J. Analysis and reconstitution of an RNP particle which stores 5S RNA and tRNA in amphibian oocytes. Nucl Acids Res 1981; 9:605–621.

    Article  PubMed  CAS  Google Scholar 

  19. Steitz JA, Berg C, Hendrick JP et al. A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells. J Cell Biol 1988; 106:545–556.

    Article  PubMed  CAS  Google Scholar 

  20. Wormington WM. Developmental expression and 5S rRNA binding activity of Xenopus laevis ribosomal protein L5. Mol Cell Biol 1989; 9:5281–5288.

    PubMed  CAS  Google Scholar 

  21. Allison LA, North MT, Murdoch KJ et al. Structural requirements of 5S rRNA for nuclear transport, 7S ribonucleoprotein particle assembly, and 60s ribosomal subunit assembly in Xenopus oocytes. Mol Cell Biol 1993; 13:6819–6831.

    PubMed  CAS  Google Scholar 

  22. Allison LA, Romaniuk PJ, Bakken AH. RNA-protein interactions of stored 5S RNA with TFIIIA and ribosomal protein L5 during Xenopus oogenesis. Dev Biol 1991; 144:129–144.

    Article  PubMed  CAS  Google Scholar 

  23. Allison LA, North MT, Neville LA. Differential binding of oocyte-type and somatic-type 5S rRNA to TFIIIA and ribosomal protein L5 in Xenopus oocytes: Specialization for storage versus mobilization. Dev Biol 1995; 168:284–295.

    Article  PubMed  CAS  Google Scholar 

  24. Romaniuk PJ. Characterization of the RNA binding properties of transcription factor IIIA of Xenopus laevis oocytes. Nucl Acids Res 1985; 13:5369–5387.

    Article  PubMed  CAS  Google Scholar 

  25. Romaniuk PJ. Characterization of the equilibrium binding of Xenopus transcription factor IIIA to the 5S RNA gene. J Biol Chem 1990; 265:17593–17600.

    PubMed  CAS  Google Scholar 

  26. Sakonju S, Bogenhagen DF, Brown DD. A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5′ border of the region. Cell 1980; 19:13–25.

    Article  PubMed  CAS  Google Scholar 

  27. Sakonju S, Brown DD, Engelke D et al. The binding of a transcription factor to deletion mutants of a 5S rRNA gene. Cell 1981; 23:665–669.

    Article  PubMed  CAS  Google Scholar 

  28. Sakonju S, Brown DD. Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 1982; 31:395–405.

    Article  PubMed  CAS  Google Scholar 

  29. Pieler T, Hamm J, Roeder RG. The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 1987; 48:91–100.

    Article  PubMed  CAS  Google Scholar 

  30. Pieler T, Oei S-L, Hamm J et al. Functional domains of the Xenopus laevis 5S gene promoter. EMBO J 1985; 4:3751–3756.

    PubMed  CAS  Google Scholar 

  31. Romaniuk PJ, de Stevenson IL, Wong H-HA. Defining the binding site of Xenopus transcription factor IIIA on 5S RNA using truncated and chimeric 5S RNA molecules. Nucl Acids Res 1987; 15:2737–2755.

    Article  PubMed  CAS  Google Scholar 

  32. Darsillo P, Huber PW. The use of chemical nucleases to analyze RNA-protein interactions-the TFIIIA-5S rRNA complex. J Biol Chem 1991; 266:21075–21082.

    PubMed  CAS  Google Scholar 

  33. Andersen J, Delihas N, Hanas JS et al. 5S RNA structure and interaction with transcription factor A. 2. Ribonuclease probe of the 7S RNP from Xenopus laevis immature oocytes and RNA exchange properties of the 7S particle. Biochemistry 1984; 23:5759–5766.

    Article  PubMed  CAS  Google Scholar 

  34. Andersen J, Delihas N, Hanas JS et al. 5S RNA structure and interaction with transcription factor A. 1. Ribonuclease probe of the 7S particle from Xenopus laevis immature oocytes and RNA exchange properties of the 7S particle. Biochemistry 1984; 23:5752–5759.

    Article  PubMed  CAS  Google Scholar 

  35. Huber PW, Wool IG. Identification of the binding site on 5S rRNA for the transcription factor IIIA: Proposed structure of a common binding site on 5S rRNA and on the gene. Proc Natl Acad Sci USA 1986; 83:1593–1597.

    Article  PubMed  CAS  Google Scholar 

  36. Christiansen J, Brown RS, Sproat BS et al. Xenopus transcription factor IIIA binds primarily at junctions between double helical stems and internal loops in oocyte 5S RNA. EMBO J 1987; 6:453–460.

    PubMed  CAS  Google Scholar 

  37. Baudin F, Romaniuk PJ. A difference in the importance of bulged nucleotides and their parent base pairs in the binding of transcription factor IIIA to Xenopus 5S RNA and 5S RNA genes. Nucl Acids Res 1989; 17:2043–2056.

    Article  PubMed  CAS  Google Scholar 

  38. Baudin F, Romaniuk PJ, Romby P et al. Involvement of hinge nucleotides of Xenopus laevis 5S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA. J Mol Biol 1991; 218:69–81.

    Article  PubMed  CAS  Google Scholar 

  39. In: Romaniuk PJ, de Stevenson IL, You Q, eds. The specificity of the RNA binding activity of Xenopus transcription factor IIIA. New York: Alan R. Liss, Inc.; 1989. Cech TR, ed. Molecular Biology of RNA.

    Google Scholar 

  40. Veldhoen N, You QM, Setzer DR et al. Contribution of individual base pairs to the interaction of TFIIIA with the Xenopus 5S RNA gene. Biochemistry 1994; 33:7568–7575.

    Article  PubMed  CAS  Google Scholar 

  41. You Q, Romaniuk PJ. The effects of disrupting 5S RNA helical structures on the binding of Xenopus transcription factor IIIA. Nucl Acids Res 1990; 18:5055–5062.

    Article  PubMed  CAS  Google Scholar 

  42. You Q, Veldhoen N, Baudin F et al. Mutations in 5S DNA and 5S RNA have different effects on the binding of Xenopus transcription factor IIIA. Biochemistry 1991; 30:2495–2500.

    Article  PubMed  CAS  Google Scholar 

  43. Romaniuk PJ. The role of highly conserved single-stranded nucleotides of Xenopus 5S RNA in the binding of transcription factor IIIA. Biochemistry 1989; 28:1388–1395.

    Article  PubMed  CAS  Google Scholar 

  44. Setzer DR, Menezes SR, Del Rio S et al. Functional interactions between the zinc fingers of Xenopus transcription factor IIIA during 5S rRNA binding. RNA 1996; 2:1254–1269.

    PubMed  CAS  Google Scholar 

  45. Romaniuk PJ, de Stevenson IL, Ehresmann C et al. A comparison of the solution structures and conformational properties of the somatic and oocyte 5S rRNAs of Xenopus laevis. Nucl Acids Res 1988; 16(5):2295–2312.

    Article  PubMed  CAS  Google Scholar 

  46. Westhof E, Romby P, Romaniuk PJ et al. Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5S rRNAs. J Mol Biol 1989; 207:417–431.

    Article  PubMed  CAS  Google Scholar 

  47. Romby P, Baudin F, Brunel C et al. Ribosomal 5S RNA from Xenopus laevis oocytes: Conformation and interaction with transcription factor IIIA. Biochimie 1990; 72:437–452.

    Article  PubMed  CAS  Google Scholar 

  48. Shen Z, Hagerman PJ. Conformation of the central, three-helix junction of the 5S ribosomal RNA of Sulfolobus acidocaldarius. J Mol Biol 1994; 241:415–430.

    Article  PubMed  CAS  Google Scholar 

  49. Ha T, Zhuang X, Kim HD et al. Ligand-induced conformational changes observed in single RNA molecules. Proc Natl Acad Sci USA 1999; 96:9077–9082.

    Article  PubMed  CAS  Google Scholar 

  50. de Stevenson IL, Romby P, Baudin F et al. Structural studies on site-directed mutants of domain 3 of Xenopus laevis oocyte 5S ribosomal RNA. J Mol Biol 1991; 219:243–255.

    Article  PubMed  Google Scholar 

  51. Theunissen O, Rudt F, Pieler T. Structural determinants in 5S RNA and TFIIIA for 7S RNP formation. Eur J Biochem 1998; 258:758–767.

    Article  PubMed  CAS  Google Scholar 

  52. Rawlings SL, Mart GD, Huber PW. Analysis of the binding of Xenopus transcription factor IIIA to oocyte 5 S rRNA and to the 5 S rRNA gene. J Biol Chem 1996; 271:869–877.

    Article  CAS  Google Scholar 

  53. Wimberly B, Varani G, Tinoco I. The conformation of loop E of eukaryotic 5S Ribosomal RNA. Biochemistry 1993; 32:1078–1087.

    Article  PubMed  CAS  Google Scholar 

  54. Sands MS, Bogenhagen DF. TFIIIA binds to different domains of 5S RNA and the Xenopus borealis 5S RNA gene. Mol Cell Biol 1987; 7:3985–3993.

    PubMed  CAS  Google Scholar 

  55. Wuttke DS, Foster MP, Case DA et al. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: Determinants of affinity and sequence specificity. J Mol Biol 1997; 273:183–206.

    Article  PubMed  CAS  Google Scholar 

  56. Nolte RT, Conlin RM, Harrison SC et al. Differing roles for zinc fingers in DNA recognition: Structure of a six finger transcription factor IIIA complex. Proc Natl Acad Sci USA 1998; 95:2938–2943.

    Article  PubMed  CAS  Google Scholar 

  57. Vrana KE, Churchill MEA, Tullius TD et al. Mapping functional regions of transcription factor TFIIIA. Mol Cell Biol 1988; 8:1684–1696.

    PubMed  CAS  Google Scholar 

  58. Fiser-Littell RM, Duke AL, Yanchick JS et al. Deletion of the N-terminal region of Xenopus transcription factor IIIA inhibits specific binding to the 5S RNA gene. J Biol Chem 1988; 263:1607–1610.

    PubMed  CAS  Google Scholar 

  59. Theunissen O, Rudt F, Guddat U et al. RNA and DNA binding zinc fingers in xenopus TFIIIA. Cell 1992; 71:679–690.

    Article  PubMed  CAS  Google Scholar 

  60. Clemens KR, Liao XB, Wolf V et al. Definition of the binding sites of individual zinc fingers in the transcription factor IIIA-5S RNA gene complex. Proc Natl Acad Sci USA 1992; 89:10822–10826.

    Article  PubMed  CAS  Google Scholar 

  61. Clemens KR, Wolf V, McBryant SJ et al. Molecular basis for specific recognition of both RNA and DNA by a zinc finger protein. Science 1993; 260:530–533.

    Article  PubMed  CAS  Google Scholar 

  62. Clemens KR, Zhang PH, Liao XB et al. Relative contributions of the zinc fingers of transcription factor IIIA to the energetics of DNA binding. J Mol Biol 1994; 244:23–35.

    Article  PubMed  CAS  Google Scholar 

  63. Darby MK, Joho KE. Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA Gene. Mol Cell Biol 1992; 12:3155–3164.

    PubMed  CAS  Google Scholar 

  64. Liao XB, Clemens KR, Tennant L et al. Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5S RNA gene. J Mol Biol 1992; 223:857–871.

    Article  PubMed  CAS  Google Scholar 

  65. Liggins JR, Privalov PL. Energetics of the specific binding interaction of the first three zinc fingers of the transcription factor TFIIIA with its cognate DNA sequence. Proteins 2000; Suppl 4:50–62.

    Article  PubMed  CAS  Google Scholar 

  66. Hansen PK, Christensen JH, Nyborg J et al. Dissection of the DNA binding domain of Xenopus laevis TFIIIA: Quantitative DNase I footprinting analysis of specific complexes between a 5S RNA gene fragment and N-terminal fragments of TFIIIA containing 3 zinc finger, 4 zinc finger or 5 zinc finger domains. J Mol Biol 1993; 233:191–202.

    Article  PubMed  CAS  Google Scholar 

  67. Churchill MEA, Tullius TD, Klug A. Mode of interaction of the zinc finger protein TFIIIA with a 5S RNA gene of Xenopus. Proc Natl Acad Sci USA 1990; 87:5528–5532.

    Article  PubMed  CAS  Google Scholar 

  68. Hayes JJ, Clemens KR. Locations of contacts between individual zinc fingers of Xenopus laevis transcription factor IIIA and the internal control region of a 5S RNA gene. Biochemistry 1992; 31:11600–11605.

    Article  PubMed  CAS  Google Scholar 

  69. Hayes JJ, Tullius TD. Structure of the TFIIIA-5S DNA complex. J Mol Biol 1992; 227:407–417.

    Article  PubMed  CAS  Google Scholar 

  70. Del Rio S, Menezes SR, Setzer DR. The function of individual zinc fingers in sequence specific DNA recognition by transcription factor IIIA. J Mol Biol 1993; 233:567–579.

    Article  PubMed  Google Scholar 

  71. Kehres DG, Subramanyan GS, Hung VS et al. Energetically unfavorable interactions among the zinc fingers of transcription factor IIIA when bound to the 5S rRNA gene. J Biol Chem 1997; 272:20152–20161.

    Article  PubMed  CAS  Google Scholar 

  72. Zang WQ, Veldhoen N, Romaniuk PJ. Effects of zinc finger mutations on the nucleic acid binding activities of Xenopus transcription factor IIIA. Biochemistry 1995; 34:15545–15552.

    Article  PubMed  CAS  Google Scholar 

  73. Bogenhagen DF. Proteolytic footprinting of transcription factor TFIIIA reveals different tightly binding sites for 5S RNA and 5S DNA. Mol Cell Biol 1993; 13:5149–5158.

    PubMed  CAS  Google Scholar 

  74. McBryant SJ, Veldhoen N, Gedulin B et al. Interaction of the RNA binding fingers of Xenopus transcription factor IIIA with specific regions of 5S ribosomal RNA. J Mol Biol 1995; 248:44–57.

    Article  PubMed  CAS  Google Scholar 

  75. Friesen WJ, Darby MK. Phage display of RNA binding zinc fingers from transcription factor IIIA. J Biol Chem 1997; 272:10994–10997.

    Article  PubMed  CAS  Google Scholar 

  76. Searles MA, Lu D, Klug A. The role of the central zinc fingers of transcription factor IIIA in binding to 5S RNA. J Mol Biol 2000; 301:47–60.

    Article  PubMed  CAS  Google Scholar 

  77. Ryan RF, Darby MK. The role of zinc finger linkers in p43 and TFIIIA binding to 5S rRNA and DNA. Nucl Acids Res 1998; 26:703–709.

    Article  PubMed  CAS  Google Scholar 

  78. Hamilton TB, Turner J, Barilla K et al. Contribution of individual amino acids to the nucleic acid binding activities of the Xenopus zinc finger proteins TFIIIA and p43. Biochemistry 2001; 40:6093–6101.

    Article  PubMed  CAS  Google Scholar 

  79. Giel-Pietraszuk M, Barciszewska MZ. Additivity of interactions of zinc finger motifs in specific recognition of RNA. J Biochem 2002; 131:571–578.

    PubMed  CAS  Google Scholar 

  80. Neely LS, Lee BM, Xu J et al. Identification of a minimal domain of 5S ribosomal RNA sufficient for high affinity interactions with the RNA-specific zinc fingers of transcription factor IIIA. J Mol Biol 1999; 291:549–560.

    Article  PubMed  CAS  Google Scholar 

  81. Sands MS, Bogenhagen DF. Two zinc finger proteins from Xenopus laevis bind the same region of 5S RNA But with different nuclease protection patterns. Nucl Acids Res 1991; 19:1797–1803.

    Article  PubMed  CAS  Google Scholar 

  82. Zang WQ, Romaniuk PJ. Characterization of the 5S RNA binding activity of Xenopus zinc finger protein p43. J Mol Biol 1995; 245:549–558.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Romaniuk, P.J. (2005). TFIIIA and p43: Binding to 5S Ribosomal RNA. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_10

Download citation

Publish with us

Policies and ethics