Skip to main content

Mixed Venous CO2 and Ventilation During Exercise and CO2-Rebreathing in Humans

  • Conference paper
  • 613 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 551))

Abstract

The physiological mechanism of exercise-induced hyperpnea is an important and long-standing issue in respiratory physiology research.1 However, the precise mechanism of exercise-induced hyperpnea still is not understood. It has been confirmed that neural central command from the hypothalamus plays an important role in respiratory control during exercise.2 Activation of receptors in working muscle3,4 and stimulation of the carotid body by elevated plasma potassium5 have both been shown to contribute to exercise-induced hyperpnea. However, most of the other hypotheses to explain exercise-induced hyperpnea have been based on the observed close relationship between ventilation and the level of metabolic work; these hypotheses include (1) sensing of CO2 by receptors in the pulmonary circulation,69 (2) sensing of arterial CO2 partial pressure (PaCO2) as well as PaCO2 oscillation by the carotid body10,11 and (3) modulation of stretch-sensitive afferent activity by CO2.12,13 Thus, it has been widely assumed that metabolically produced CO2 is the most important element in the mechanism of exercise-induced hyperpnea. Therefore, the relationship between ventilation (Ve) and mixed venous CO2 partial pressure (PvCO2) as well as the relationship between Ve and PaCO2 needs to be fully analyzed in order to understand the contribution of metabolically produced CO2 to exercise-induced hyperpnea. However, most of the previous reports on PvCO2 dynamics during exercise in humans were not based on direct measurement, but rather on the estimation of PvCO2 by CO2 rebreathing,14,l5 and PvCO2 has been directly measured during exercise in humans only in a few studies.16 This is mainly because sampling of mixed venous blood during exercise in humans is technically difficult.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Mateika, and J. Duffin, A review of the control of breathing during exercise, Eur. J. Appl. Physiol. 71, 1–27 (1995).

    Article  CAS  Google Scholar 

  2. F. L. Eldridge, D. E. Millhom, and T. G. Waldrop, Exercise hyperpnea and locomotion: parallel activation from the hypothalamus, Science, 211, 844–846 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. H. V. Forster, and L. G. Pan, Contribution of acid-base changes to control of breathing during exercise, Can. J. Appl. Physiol. 20, 380–394 (1995).

    CAS  PubMed  Google Scholar 

  4. D. A. Oelberg, A. B. Evans, M. I. Hrovat, P. P. Pappagianopoulos, S. Patz, and D. M. Systrom, Skeletal muscle chemoreflex and pHi in exercise ventilatory control, J. Appl. Physiol. 84, 676–682 (1998).

    CAS  PubMed  Google Scholar 

  5. D. J. Paterson, P. A. Robbins, and J. Conway, Changes in arterial plasma potassium and ventilation during exercise in man, Respir. Physiol. 78, 323–330 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. K. R. Kollmeyer, and L. I. Kleinman, A respiratory venous chemoreceptor in the young puppy, J. Appl. Physiol. 38, 819–826 (1975).

    CAS  PubMed  Google Scholar 

  7. E. A. Phillipson, G. Bowes, E. R. Townsend, J. Duffin, and J. D. Cooper, Role of metabolic CO2 production in ventilatory response to steady-state exercise, J. Clin. Invest. 68, 768–774 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. M. I. Sheldon, and J. F. Green, Evidence for pulmonary CO2 chemosensitivity: effects on ventilation. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 52, 1192–1197 (1982).

    CAS  Google Scholar 

  9. E. R. Schertel, D. A. Schneider, L. Adams, and J. F. Green, Effect of pulmonary arterial Pco2 on breathing pattern, J. Appl. Physiol. 64, 1844–1850 (1988).

    CAS  PubMed  Google Scholar 

  10. B. A. Cross, A. Davey, A. Guz, P. G. Katona, M. MacLean, K. Murphy, S. J. G. Semple, and R. P. Stidwell, The pH oscillations in arterial blood during exercise: a potential signal for the ventilatory response in the dog, J. Physiol. (Lond.) 329, 57–73 (1982).

    CAS  Google Scholar 

  11. S. A. Ward, Peripheral and central chemoreceptor control of ventilation during exercise in humans, Can. J. Appl. Physiol. 19, 305–333 (1994).

    CAS  PubMed  Google Scholar 

  12. J. F. Green, E. R. Schertel, H. M. Coleridge, and J. C. Coleridge, Effect of pulmonary arterial Pco2 on slowly adapting pulmonary stretch receptors, J. Appl. Physiol. 60, 2048–2055 (1986).

    CAS  PubMed  Google Scholar 

  13. E. S. Schelegle, and J. F. Green, An overview of the anatomy and physiology of slowly adapting pulmonary stretch receptors, Respir. Physiol. 125, 17–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. J. H. Auchincloss, R. Gilbert, M. Kuppinger, and D. Peppi, Mixed venous CO2 tension during exercise, J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 48, 933–938 (1980).

    CAS  Google Scholar 

  15. G. Alves da Silva, A. el-Manshawi, G. J. Heigenhauser, and N. L. Jones, Measurement of mixed venous carbon dioxide pressure by rebreathing during exercise, Respir. Physiol. 59, 379–392 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. R. Casaburi, J. Daly, J. E. Hansen, and R. M. Effros, Abrupt changes in mixed venous blood gas composition after the onset of exercise, J. Appl. Physiol. 67, 1106–1112 (1989).

    CAS  PubMed  Google Scholar 

  17. B. F Whipp, and K. Wasserman, Carotid bodies and ventilatory control dynamics in man. Fed. Proc. 39, 2668–2673 (1980).

    CAS  PubMed  Google Scholar 

  18. Y. Okada, Z. Chen, and S. Kuwana S, Cytoarchitecture of central chemoreceptors in the mammalian ventral medulla. Respir. Physiol. 291, 13–23 (2001).

    Article  Google Scholar 

  19. G. J. A. Cropp, and J. H. J. Comroe, Role of mixed venous blood Pco2 in respiratory control. J. Appl. Physiol. 16, 1029–1033 (1961).

    CAS  PubMed  Google Scholar 

  20. J. T. Sylvester, B. J. Whipp, and K. Wasserman, Ventilatory control during brief infusions of CO2-laden blood in the awake dog. J. Appl. Physiol. 35, 178–186 (1973).

    CAS  PubMed  Google Scholar 

  21. J. A. Orr, M. R. Fedde, H. Shams, H. Roskenbleck, and P. Scheid, Absence of CO2-sensitive venous chemoreceptors in the cat. Respir. Physiol. 73, 211–224 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Okada, T. Satoh, S. Kuwana, M. Kashiwagi, and T. Kusakabe, Electrical stimulation of the rabbit pulmonary artery increases respiratory output, Respir. Physiol. Neurobiol. 140, 209–217 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this paper

Cite this paper

Satoh, T., Okada, Y., Hara, Y., Sakamaki, F., Kyotani, S., Tomita, T. (2004). Mixed Venous CO2 and Ventilation During Exercise and CO2-Rebreathing in Humans. In: Champagnat, J., Denavit-Saubié, M., Fortin, G., Foutz, A.S., Thoby-Brisson, M. (eds) Post-Genomic Perspectives in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 551. Springer, Boston, MA. https://doi.org/10.1007/0-387-27023-X_40

Download citation

Publish with us

Policies and ethics