Skip to main content

Ecophysiology of Plants with Crassulacean Acid Metabolism

  • Chapter
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 9))

Summary

The taxonomic and ecological diversity of CAM plants is testament to a suite of morphological and metabolic attributes. These have evolved under contrasting selective pressures in up to 7% of all plant species many times over the past 10–100 Ma. The water and carbon conserving features of CAM impose: i) morphological constraints in terms of the diffusive limitations of succulence in cells or organs and ii) metabolic constraints in terms of maintaining two temporally separated carboxylation systems (usually within the same cell) and a reciprocating pool of carbohydrates which are unavailable for growth. Despite these limitations, the expression of CAM is characterized by a highly plastic response to environmental perturbations which not only permits survival under variable adverse conditions but can also result in high annual productivities of some species. This chapter will consider the biochemical components and physiological consequences of this photosynthetic plasticity. The implications for plant carbon balance, photosynthetic integrity and water use efficiency will be considered in both constitutive and facultative CAM species in response to daily, seasonal and possible future changes in environmental conditions. By integrating field and laboratory-based approaches to the characterization of CAM expression, we seek to demonstrate that studies on the ecophysiology of this photosynthetic pathway can provide a key to understanding the components of metabolic plasticity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

δ13C:

carbon-isotope ratio (‰ relative to Pee Dee Belemnite)

Δ:

discrimination against 13C

ΔH:

overnight accumulation of titratable acids

CA1P:

2-carboxyarabinitol 1-phosphate

CAM:

crassulacean acid metabolism

CCM:

carbon concentrating mechanism

CHO:

carbohydrate

EPI:

environmental productivity index

gi:

internal (mesophyll) conductance to CO2

NPQ:

non-photochemical quenching

Pi:

partial pressure of CO2 at Rubisco

PCK:

phosphoenolpyruvate carboxykinase

PEP:

phosphoenolpyruvate

PEPC:

phosphoenolpyruvate carboxylase

PFD:

photon flux density

PGA:

phosphoglycerate

P3:

partial pressure of CO2 within substomatal cavity

PYR:

pyruvate

qP:

photochemical quenching

Rubisco:

ribulose 1,5-bisphosphate carboxylase/oxygenase

RuBP:

ribulose 1,5-bisphosphate

WSP:

water storage parenchyma

WUE:

water use efficiency

References

  • Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ and Griffiths H (1998) Tansley Review No. 97: Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138: 171–190

    Article  CAS  Google Scholar 

  • Adams III WW and Osmond CB (1988) Internal CO2 supply during photosynthesis of sun and shade grown CAM plants in relation to photoinhibition. Plant Physiol 86: 117–123

    CAS  Google Scholar 

  • Adams III WW, Nishida K and Osmond B (1986) Quantum yields of CAM plants measured by photosynthetic CO2 exchange. Plant Physiol 81: 297–300

    CAS  Google Scholar 

  • Adams III WW, Osmond CB and Sharkey TD (1987) Responses of two CAM species to different irradiances during growth and susceptibility to photoinhibition by high light. Plant Physiol 83: 213–218

    Google Scholar 

  • Adams III WW, Terashima I, Brugnoli E and Demmig B (1988) Comparisons of photosynthesis and photoinhibition in the CAM vine Hoya australis and several C3 vines growing on the coast of eastern Australia. Plant Cell Environ 11: 173–181

    CAS  Google Scholar 

  • Barker DH and Adams III WW (1997) The xanthophyll cycle and energy dissipation in differently oriented faces of the cactus Opuntia macrorhiza. Oecologia 109: 353–361

    Article  Google Scholar 

  • Barker DH, Seaton GR and Robinson SA (1997) Internal and external photoprotection in developing leaves of the CAM plant Cotyledon orbiculata. Plant Cell Environ 20: 617–624

    Article  CAS  Google Scholar 

  • Barker DH, Logan BA, Adams III WW and Demmig-Adams B (1998) Photochemistry and xanthophyll cycle-dependent energy dissipation in differently oriented cladodes of Opuntia stricta during the winter. Aust J Plant Physiol 25: 95–104

    CAS  Google Scholar 

  • Borland AM (1996) A model for the partitioning of photo-synthetically fixed carbon during the C3-CAM transition in Sedum telephium. New Phytol 134: 433–444

    CAS  Google Scholar 

  • Borland AM and Griffiths H (1990) The regulation of CAM and respiratory recycling by water supply and light regime in the C3-CAM intermediate Sedum telephium. Funct Ecol 4: 33–39

    Google Scholar 

  • Borland AM and Griffiths H (1992) Properties of phosphoenolpyruvate carboxylase and carbohydrate accumulation in the C3-CAM intermediate Sedum telephium L. grown under different light and watering regimes. J Exp Bot 43: 353–361

    CAS  Google Scholar 

  • Borland AM and Griffiths H (1996) Variations in the phases of crassulacean acid metabolism and regulation of carboxylation patterns determined by carbon-isotope discrimination techniques. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, pp 230–249. Springer-Verlag, Berlin

    Google Scholar 

  • Borland AM and Griffiths H (1997) A comparative study on the regulation of C3 and C4 carboxylation processes in the constitutitve crassulacean acid metabolism (CAM) plant Kalanchoé daigremontiana and the C3-CAM intermediate Clusia minor. Planta 201: 368–378

    Article  CAS  Google Scholar 

  • Borland AM, Griffiths H, Maxwell C, Broadmeadow MSJ, Griffiths NM and Barnes JD (1992) On the ecophysiology of the Clusiaceae in Trinidad: Expression of CAM in Clusia minor L. during the transition from wet to dry season and characterization of three endemic species. New Phytol 122: 349–357

    CAS  Google Scholar 

  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC and Maxwell C (1993) Short-term changes in carbon-isotope discrimination in the C3-CAM intermediate Clusia minor L. growing in Trinidad. Oecologia 95: 444–453

    Article  Google Scholar 

  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC and Maxwell C (1994) Carbon-isotope composition of biochemical fractions and the regulation of carbon balance in leaves of the C3-Crassulacean acid metabolism intermediate Clusia minor L. growing in Trinidad. Plant Physiol 106: 493–501

    CAS  PubMed  Google Scholar 

  • Borland AM, Griffiths H, Maxwell C, Fordham MC and Broadmeadow MSJ (1996) CAM induction in Clusia minor L. during the transition from wet to dry season in Trinidad: The role of organic acid speciation and decarboxylation. Plant Cell Environ 19: 655–664

    CAS  Google Scholar 

  • Borland AM, Técsi LI, Leegood RC and Walker RP (1998) Inducibility of crassulacean acid metabolism (CAM) in Clusia species; physiological/biochemical characterization and intercellular localization of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM. Planta 205: 342–351

    Article  CAS  Google Scholar 

  • Carnal NW and Black CC (1989) Soluble sugars as the carbohydrate reserve for CAM in pineapple leaves. Implications for the role of pyrophosphate: 6-phosphofructo kinase in glycolysis. Plant Physiol 90: 91–100

    CAS  Google Scholar 

  • Carter PJ, Fewson CA, Nimmo GA, Nimmo HG and Wilkins MB (1996) Roles of circadian rhythms, light and temperature in the regulation of phosphoenolpyruvate carboxylase in crassulacean acid metabolism. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, pp 46–52. Springer-Verlag, Berlin

    Google Scholar 

  • Castillo FJ (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107: 469–477

    Article  Google Scholar 

  • Christopher JT and Holtum JAM (1996) Patterns of carbon partitioning in leaves of Crassulacean acid metabolism species during deacidification. Plant Physiol 112: 393–399

    CAS  PubMed  Google Scholar 

  • Christopher JT and Holtum JAM (1998) Carbohydrate partitioning in the leaves of Bromeliaceae performing C3 photosynthesis or Crassulacean acid metabolism. Aust J Plant Physiol 25: 371–376

    CAS  Google Scholar 

  • Cockburn W, Ting IP and Sternberg LO (1979) Relationships between stomatal behaviour and internal carbon dioxide concentration in Crassulacean acid metabolism plants. Plant Physiol 63: 1029–032.

    CAS  Google Scholar 

  • Cote FX, Andre M, Folliot M, Massimino D and Daguenet A (1989) CO2 and O2 exchanges in the CAM plant Ananas comosus (L.) Merr. Plant Physiol 89: 61–68

    CAS  Google Scholar 

  • de Mattos EA, Grams TEE, Ball E, Franco AC, Haag-Kerwer A, Herzog B, Scarano FR and Lüttge U (1997) Diurnal patterns of chlorophyll a fluorescence and stomatal conductance in species of two types of coastal vegetation in southeastern Brazil. Trees 11:363–369

    Google Scholar 

  • Deléens E and Garnier-Dardart J (1977) Carbon isotope composition of biochemical fractions isolated from leaves of Bryophyllum daigremontianum Berger, a plant with crassulacean acid metabolism: Some physiological aspects related to CO2 dark fixation. Planta 135: 241–248

    Google Scholar 

  • Deléens E, Garnier-Dardart J and Querioz O (1979) Carbon-isotope composition of intermediates of the starch-malate sequence and level of the crassulacean acid metabolism in leaves of Kalanchoë blossfeldiana Tom Thumb. Planta 146: 441–449

    Google Scholar 

  • Demmig-Adams B and Adams III WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26

    Google Scholar 

  • Eller BM and Ferrari S (1997) Water use efficiency of two succulents with contrasting CO2 fixation pathways. Plant Cell Environ 20: 93–100

    Article  CAS  Google Scholar 

  • Evans JR and von Caemmerer S (1996) Carbon dioxide fixation in leaves. Plant Physiol 110: 339–346

    CAS  PubMed  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA and Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21: 475–495

    CAS  Google Scholar 

  • Fahrendorf T, Holtum JAM, Mukherjee U and Latzko E (1987) Fructose 1,6-bisphosphate, carbohydrate partitioning and crassulacean acid metabolism. Plant Physiol 84: 182–187

    CAS  Google Scholar 

  • Farquhar GD and von Caemmerer S (1982) Modelling of photosynthetic responses to environmental conditions. In: Lange OL, Nobel PS, Osmond CB and Ziegler H (eds) Plant Physiological Ecology II, Vol 12B, pp 549–587. Springer-Verlag, Heidelberg

    Google Scholar 

  • Fetene M, Lüttge U and Zeigler H (1991) Flexibility in CO2 fixation pathway of a highland Kalanchoë, Kalanchoë petitiana A. Rich. Botanica Acta 104: 374–378

    CAS  Google Scholar 

  • Fischer A and Kluge M (1984) Studies on carbon flow in crassulacean acid metabolism during the initial light period. Planta 160: 121–128

    Article  CAS  Google Scholar 

  • Franco AC, Olivares E, Ball E, Lüttge U and Haag-Kerwer A (1994) In situ studies of Crassulacean acid metabolism in several sympatric species of tropical trees of the genus Clusia. New Phytol 126: 203–211

    CAS  Google Scholar 

  • Geiger DR and Servaites JC (1994) Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 45: 235–56

    Article  Google Scholar 

  • Gersani M, Graham EA and Nobel PS (1993) Growth responses of individual roots of Opuntia ficus indica to salinity. Plant Cell Environ 16: 827–834

    CAS  Google Scholar 

  • Gibeaut DM and Thomson WW (1989) Leaf ultrastructure of Peperomia obtusifolia, P. camptotricha and P. scandens. Bot Gaz 150: 108–114

    Google Scholar 

  • Gil F (1986) Origin of CAM as an alternative photosynthetic carbon fixation pathway. Photosynthetica 20: 494–507

    CAS  Google Scholar 

  • Gillon JS, Borland AM, Harwood KG, Roberts A, Broadmeadow MSJ and Griffiths H (1998) Carbon dioxide discrimination in terrestrial plants: carboxylations and decarboxylations. In: Griffiths H (ed) Stable isotopes. Integration of Biological, Ecological and Geochemical Processes, pp 111–131. Bios, Oxford

    Google Scholar 

  • Goldstein, G and Nobel PS (1994) Water relations and low-temperature acclimation for cactus species varying in freezing tolerance. Plant Physiol 104: 675–681

    CAS  PubMed  Google Scholar 

  • Grams TEE, Borland AM, Roberts A, Griffiths H, Beck F and Lüttge U (1997a) On the mechanism of reinitiation of endogenous crassulacean acid metabolism rhythm by temperature changes. Plant Physiol 113: 1309–1317

    CAS  PubMed  Google Scholar 

  • Grams TEE, Haag-Kerwer EO, Ball E, Arndt S, Popp M, Medina E and Lüttge U (1997b) Comparative measurements of chlorophyll a fluorescence, acid accumulation and gas exchange in exposed and shaded plants of Clusia minor L. and Clusia multiflora H.B.K. in the field. Trees 11: 240–247

    Article  Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Lüttge U (ed) Ecological Studies 76: Vascular Plants as Epiphytes, pp 42–85. Springer-Verlag, Berlin

    Google Scholar 

  • Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15: 1051–1062

    CAS  Google Scholar 

  • Griffiths H and Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: Relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60: 176–184

    Article  Google Scholar 

  • Griffiths H, Lüttge U, Stimmel K-H, Crook CE, Griffiths NM and Smith JAC (1986) Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. Plant Cell Environ 9: 385–393

    Google Scholar 

  • Griffiths H, Ong BL, Avadhani PN and Goh CJ (1989) Recycling of respiratory CO2 during crassulacean acid metabolism: Alleviation of photoinhibition in Pyrrosia piloselloides. Planta 179: 115–122

    Article  CAS  Google Scholar 

  • Griffiths H, Broadmeadow MSJ, Borland AM and Hetherington CS (1990) Short-term changes in carbon-isotope discrimination identify transitions between C3 and C4 carboxylation during crassulacean acid metabolism. Planta 181: 604–610

    Article  CAS  Google Scholar 

  • Haag-Kerwer A, Franco AC and Lüttge U (1992) The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor L. J Exp Bot 248: 345–352

    Google Scholar 

  • Heber U, Bligny R, Streb P and Douce R (1996) Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight. Bot Acta 109: 307–315

    CAS  Google Scholar 

  • Herppich WB, Herppich M, Tüffers A, von Willert DJ, Midgley GF and Veste M (1998a) Photosynthetic responses to CO2 concentration and photon fluence rates in the CAM-cycling plant Delosperma tradescantioides (Mesembryanthemaceae). New Phytol 138: 433–440

    Article  Google Scholar 

  • Herppich WB, Midgley GF, Herppich M, Tüffers A, Veste M and von Willert DJ (1998b) Interactive effects of photon fluence rates and drought on CAM-cycling in Delosperma tradescantioides (Mesembryanthemaceae). Physiol Plant 102: 148–154

    Article  CAS  Google Scholar 

  • Holbrook GP, Campbell WJ, Rowland-Bamford A and Bowes G (1994) Intraspecific variation in the light/dark modulation of ribulose 1,5-bisphosphate carboxylase-oxygenase activity in soybean. J Exp Bot 45: 1119–1126

    CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  CAS  PubMed  Google Scholar 

  • Ingleses P, Israel AA and Nobel PS (1994) Growth and CO2 uptake for cladodes and fruit of the Crassulacean acid metabolism species Opuntia ficus-indica during fruit development. Physiol Plant 91: 708–714

    Google Scholar 

  • Kaul RB (1977) The role of the multiple epidermis in foliar succulence of Peperomia (Piperaceae). Bot Gaz 138: 213–218

    Article  Google Scholar 

  • Kenyon WH, Holaday AS and Black CC (1981) Diurnal changes in metabolite levels and crassulacean acid metabolism in Kalanchoë daigremontiana leaves. Plant Physiol 68: 1002–1007

    CAS  Google Scholar 

  • Kluge M and Brulfert J (1996) Crassulacean acid metabolism in the genus Kalanchoë: ecological, physiological and biochemical aspects. In: Winter K, Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Springer, Berlin pp 324–335

    Google Scholar 

  • Kluge M and Ting IP (1978). Crassulacean acid metabolism: Analysis of an ecological adaptation. Springer-Verlag, Berlin

    Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand: Crassulacean acid metabolism (CAM) a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593–629

    Google Scholar 

  • Martin CE (1996) Putative causes and consequences of recycling CO2 via crassulacean acid metabolism. In: Winter K and Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution, pp 192–203. Springer-Verlag, Berlin

    Google Scholar 

  • Martin CE, Higley MH and Wang WZ (1988) Recycling of CO2 via crassulacean acid metabolism in the rock outcrop succulent Sedum pulchellum Michx. (Crassulaceae). Photosynth Res 18: 337–343

    Article  CAS  Google Scholar 

  • Maxwell C, Griffiths H, Borland AM, Broadmeadow MSJ and McDavid CR (1992) Photoinhibitory responses of the epiphytic bromeliad Guzmania monostachia during the dry season in Trinidad maintain photochemical integrity under adverse conditions. Plant Cell Environ 15: 37–47

    Google Scholar 

  • Maxwell C, Griffiths H and Young AJ (1994) Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia; gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. Funct Ecol 8: 746–754

    Google Scholar 

  • Maxwell C, Griffiths H, Borland AM, Young AJ, Broadmeadow MSJ and Fordham MC (1995) Short-term photosynthetic responses of the C3-CAM epiphyte Guzmania monostachia var. monostachia to tropical seasonal transitions under field conditions. Aust J Plant Physiol 22: 771–781

    CAS  Google Scholar 

  • Maxwell K, von Caemmerer S and Evans JR (1997) Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism? Aust J Plant Physiol 24: 777–786

    CAS  Google Scholar 

  • Maxwell K, Badger MR and Osmond CB (1998) A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Aust J Plant Physiol 25: 45–52

    Google Scholar 

  • Mayoral ML, Medina E and Garcia V (1991) Effect of source-sink manipulations on the crassulacean acid metabolism of Kalanchoë pinnata. J Exp Bot 42: 1123–1129

    CAS  Google Scholar 

  • Medina E and Delgado M (1976) Photosynthesis and night CO2 fixation in Echeveria columbianafs v. Poell nitz. Photosynthetica 10: 155–163

    CAS  Google Scholar 

  • Miszalski Z, Slesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U and Ratajczak R (1998) Subcellular localization and stress response of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21: 169–179

    Article  CAS  Google Scholar 

  • Murphy R and Smith JAC (1994) A critical comparison of the pressure-probe and pressure-chamber techniques for estimating leaf-cell turgor pressure in Kalanchoë daigremontiana. Plant Cell Environ 17: 15–29

    Google Scholar 

  • Murphy R and Smith JAC (1998) Determination of cell water-relation parameters using the pressure probe: Extended theory and practice of the pressure-clamp technique. Plant Cell Environ 21: 637–657

    Article  Google Scholar 

  • Nimmo GA, Nimmo HG, Fewson CA, Wilkins MB (1984) Diurnal changes in the properties of phosphoenolpyruvate carboxylase in Bryophyllum leaves: A possible covalent modification. FEBS Lett 178: 199–203

    Article  CAS  Google Scholar 

  • Nimmo GA, Nimmo HG, Hamilton ID, Fewson CA, Wilkins MB (1986) Purification of the phosphorylated night form and dephosphorylated day form of phosphoenolpyruvate carboxylase from Bryophyllum fedstchenkoi. Biochem J 239: 213–220

    CAS  PubMed  Google Scholar 

  • Nimmo, GA, Wilkins MB, Fewson CA, Nimmo HG (1987) Persistent circadian rhythms in the phosphorylation state of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves and its sensitivity to inhibition by malate. Planta 170: 408–415

    Article  CAS  Google Scholar 

  • Nishio J and Ting IW (1987) Carbon flow and metabolic specialisation in the tissue layers of the CAM plant Peperomia camptotricha. Plant Physiol 84: 600–604

    CAS  Google Scholar 

  • Nobel PS (1976) Water relations and photosynthesis of a desert CAM plant, Agave deserti. Plant Physiol 58:, 576–582

    CAS  Google Scholar 

  • Nobel PS (1985) PAR, water and temperature limitations on the productivity of cultivated Agave fourcroydes (Heneyquen). J Appl Ecol 22: 157–173

    Google Scholar 

  • Nobel PS (1988). Environmental Biology of Agaves and Cacti. Cambridge University Press, Cambridge

    Google Scholar 

  • Nobel PS (1991) Environmental productivity indices and productivity for Opuntia ficus-indica under current and elevated atmospheric CO2 levels. Plant Cell Environ 14: 637–646

    Google Scholar 

  • Nobel PS (1996) High productivity of certain agronomic CAM species. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, pp 255–265. Springer-Verlag, Berlin

    Google Scholar 

  • Nobel PS and Hartsock TL (1983) Relationships between photosynthetically active radiation, nocturnal acid accumulation and CO2 uptake for a crassulacean acid metabolism plant, Opuntia ficus-indica. Plant Physiol 71: 71–75

    CAS  Google Scholar 

  • Nobel PS and Israel AA (1994) Cladode development, environmental responses of CO2 uptake and productivity for Opuntia ficus-indica under elevated CO2. J Exp Bot 45: 295–303

    Google Scholar 

  • North GB and Nobel PS (1998) Water uptake and structural plasticity along roots of a desert succulent during prolonged drought. Plant Cell Environ 21: 705–713

    Article  Google Scholar 

  • Olivares E and Medina E (1990) Carbon dioxide exchange, soluble carbohydrates and acid accumulation in a fructan accumulating plant: Fourcroya humboldtiana Treal. J Exp Bot 41: 579–585

    CAS  Google Scholar 

  • Osmond B, Maxwell K, Popp M and Robinson S (1999) On being thick: Fathoming apparently futile pathways of photosynthesis and carbohydrate metabolism in succulent CAM plants. In: Burrel M, Bryant J and Kruger N (eds) Carbohydrate Metabolism in Plants, pp 183–200. BIOS, Oxford

    Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: A curiosity in context. Annu Rev Plant Physiol 29: 379–414

    Article  CAS  Google Scholar 

  • Osmond CB (1982) Carbon cycling and the stability of the photosynthetic apparatus in CAM. In: Ting IP and Gibbs M (eds) Crassulacean Acid Metabolism, pp 128–153. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Osmond CB, Popp M and Robinson SA (1996) Stoichiometric nightmares: Studies in photosynthetic O2 and CO2 exchanges in CAM plants. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, pp 19–30. Springer-Verlag, Berlin

    Google Scholar 

  • Osmond CB, Badger MR, Maxwell K, Björkman O and Leegood RC (1997) Too many photons: Photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2: 119–121

    Article  Google Scholar 

  • Parry MAJ, Andraloic PJ, Parmar S, Keys AJ, Habash D, Paul MJ, Aired R, Quick WP and Servaites JC (1997) Regulation of Rubisco by inhibitors in the light. Plant Cell Environ 20: 528–534

    Article  CAS  Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad. I. The bromeliad flora. Evolution 2: 58–89

    Google Scholar 

  • Popp M, Kramer D, Lee H, Diaz M, Zeigler H and Luttge U (1987) Crassulacean acid metabolism in tropical trees of the genus Clusia. Trees 1: 238–247

    Article  CAS  Google Scholar 

  • Portis AR (1995) The regulation of Rubisco by Rubisco activase. J Exp Bot 46: 1285–1291

    CAS  Google Scholar 

  • Roberts A, Griffiths H, Borland AM and Reinert F (1996) Is crassulacean acid metabolism activity in sympatric species of hemi-epiphytic stranglers such as Clusia related to carbon cycling as a photoprotective process? Oecologia 106: 28–38

    CAS  Google Scholar 

  • Roberts A, Borland AM and Griffiths H (1997) Discrimination processes and shifts in carboxylation during the phases of crassulacean acid metabolism. Plant Physiol 113: 1283–1291

    CAS  PubMed  Google Scholar 

  • Roberts A, Borland AM, Maxwell K and Griffiths H (1998) Ecophysiology of the C3-CAM intermediate Clusia minor L. in Trinidad: Seasonal and short-term photosynthetic characteristics of sun and shade leaves. J Exp Bot 49: 1563–1573

    CAS  Google Scholar 

  • Robinson SA, Lovelock CE and Osmond CB (1993a) Wax as a mechanism for protection against photoinhibition—a study of Cotyledon orbiculata. Botanica Acta 106: 307–312

    CAS  Google Scholar 

  • Robinson SA, Osmond CB and Giles L (1993b) Interpretations of gradients in δ 13C value in thick photosynthetic tissues of plants with Crassulacean acid metabolism. Planta 190: 271–276

    Article  CAS  Google Scholar 

  • Sage RF, Reid CD, Moore BD and Seemann JR (1993) Long-term kinetics of the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in plants with and without 2-carboxyarabinitol 1-phosphate. Planta 191: 222–230

    Article  CAS  Google Scholar 

  • Sayed OH and Hegazy AK (1994) Growth-specific phytomass allocation in Mesembryanthemum nidiflorum as influenced by CAM induction in the field. J Arid Environ 27: 325–339

    Article  Google Scholar 

  • Schulte PJ, Smith JAC and Nobel PS (1989) Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert succulent. Plant Cell Environ 12: 831–842

    Google Scholar 

  • Seemann JR, Kobza J and Moore BD (1990) Metabolism of 2-carboxyarabinitol 1-phosphate and regulation of ribulose-1,5-bisphosphate carboxylase activity. Photosynth Res 23: 119–130

    Article  CAS  Google Scholar 

  • Servaites JC, Parry MAJ, Gutteridge S and Keys AJ (1986) Species variation in the predawn inhibition of Ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 82: 1161–1163

    CAS  Google Scholar 

  • Skillman JB and Winter K (1997) High photosynthetic capacity in a shade-tolerant Crassulacean acid metabolism plant. Plant Physiol 113: 441–450

    CAS  PubMed  Google Scholar 

  • Smith JAC and Heuer S (1981) Determination of the volume of intercellular spaces in leaves and some values for CAM plants. Ann Bot 48: 915–917

    Google Scholar 

  • Smith JAC and Nobel PS (1986) Water movement and storage in a desert succulent: Anatomy and rehydration kinetics for leaves of Agave deserti. J Exp Bot 37: 1044–1053

    Google Scholar 

  • Smith JAC, Griffiths H, Lüttge U, Crooks CE, Griffiths NM and Stimmel K-H (1986) Comparative ecophysiology of CAM and C3 bromeliads. IV. Plant water relations. Plant Cell Environ 9: 395–410

    Google Scholar 

  • Smith JAC, Schulte PJ and Nobel PS (1987) Water-flow and water storage in Agave desert—osmotic implications of crassulacean acid metabolism. Plant Cell Environ 10: 639–648

    Google Scholar 

  • Spalding MH, Stumpf DK, Ku MSB, Burris RH and Edwards GE (1979) Crassulacean acid metabolism and diurnal variations of CO2 and O2 concentrations in Sedum praealtum DC. Aust J Plant Physiol 6: 557–567

    CAS  Google Scholar 

  • Sutton BG (1975) The path of carbon in CAM plants at night. Aust J Plant Physiol 2: 377–387

    CAS  Google Scholar 

  • Szarek SR and Ting IP (1974) Seasonal patterns of acid metabolism and gas exchange in Opuntia basilaris. Plant Physiol 54: 76–81

    CAS  Google Scholar 

  • Teeri JA, Tonsor SJ and Turner M (1981) Leaf thickness and carbon isotope discrimination in the Crassulaceae. Oecologia 50: 367–369

    Article  Google Scholar 

  • Thomas DA and André M (1987) Oxygen and carbon dioxide exchanges in crassulacean acid metabolism plants: I. Effect of water stress on hourly and daily patterns. Plant Physiol Biochem 25: 85–93

    Google Scholar 

  • Ting IP, Patel A, Sipes DL, Reid PD and Walling LL (1994) Differential expression of photosynthesis genes in leaf tissue layers of Peperomia as revealed by tissue printing. Am J Bot 8: 414–422

    Google Scholar 

  • Verbücheln O and Steup M (1984) Carbon metabolism and malate formation in the CAM plant Aloe arborescens. Adv Photosynth Res 3: 421–123

    Google Scholar 

  • von Caemmerer S and Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Article  Google Scholar 

  • Vu V, Allen LH and Bowes G (1984) Dark/light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories. Plant Physiol 76: 843–845

    CAS  Google Scholar 

  • Winter K and Demmig B (1987) Reduction state of Q and nonradiative energy dissipation during photosynthesis in the leaves of crassulacean acid metabolism plant, Kalanchoë daigremontiana Hamet et Perr. Plant Physiol 85: 1000–1007

    CAS  Google Scholar 

  • Winter K and Engelbrecht B (1994) Short-term CO2 responses of light and dark CO2 fixation in the Crassulacean acid metabolism plant Kalanchoë pinnata. J Plant Physiol 144: 462–467

    CAS  Google Scholar 

  • Winter K and Smith J AC (1996) Crassulacean acid metabolism: Current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Springer, Berlin pp 389–426

    Google Scholar 

  • Winter K and Ziegler H (1992) Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress. Oecologia 475–479

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC and Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129–141

    Article  Google Scholar 

  • Winter K, Lesch M and Diaz M (1990) Changes in xanthophyllcycle components and in fluorescence yield in leaves of a crassulacean-acid-metabolism plant, Clusia rosea Jacq., throughout a 12-hour photoperiod of constant irradiance. Planta 182: 181–185

    Article  CAS  Google Scholar 

  • Yakir D, Ting I and DeNiro M (1994) Natural abundance 2H/1H ratios of water storage in leaves of Peperomia congesta HBK during water stress. J Plant Physiol 144: 607–612

    CAS  Google Scholar 

  • Zotz G and Winter K. (1993a) Short-term photosynthesis measurements predict leaf carbon balance in tropical rain-forest canopy plants. Planta 191: 409–412

    Article  CAS  Google Scholar 

  • Zotz G and Winter K (1993b) Short-term regulation of Crassulacean acid metabolism activity in a tropical hemiepiphyte, Clusia uvitana. Plant Physiol 102: 835–841

    CAS  PubMed  Google Scholar 

  • Zotz G and Winter K (1994) Annual carbon balance and nitrogenuse efficiency in tropical C3 and CAM epiphytes. New Phytol 126: 481–192

    CAS  Google Scholar 

  • Zotz G and Winter K (1996) Seasonal changes in daytime versus nighttime CO2 fixation of Clusia uvitana in situ. In: Winter K, Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Springer, Berlin, pp 312–323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Borland, A.M., Maxwell, K., Griffiths, H. (2000). Ecophysiology of Plants with Crassulacean Acid Metabolism. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-48137-5_24

Download citation

  • DOI: https://doi.org/10.1007/0-306-48137-5_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6143-5

  • Online ISBN: 978-0-306-48137-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics