Skip to main content

First and Second-Order Resonant Raman Spectra of Single-Walled Carbon Nanotubes

  • Chapter
Science and Application of Nanotubes

Part of the book series: Fundamental Materials Research ((FMRE))

  • 288 Accesses

Summary

In summary, overtones and combination modes have been identified in the second-order spectra for the two dominant features in the first-order spectra (the radial breathing mode and the tangential mode) that are associated with the resonant Raman enhancement process arising from the 1D electronic density of states. Just as for the case of the first-order spectra, the resonant contributions to the second-order spectra also involve a different set of (n, m) nanotubes at each laser excitation energy Elaser. A second-order analog is observed for the broad spectral band identified with contributions from metallic nanotubes to the first-order tangential mode spectra. The unique feature of the second-order tangential overtone band shows a larger Elaser range over which the metallic nanotubes contribute, and this effect is attributed to the large (ħωphononç04eV) energy of these phonons. Combination modes associated with (ωtangRBM) and (ωtang+2ωRBM) have been identified. These combination modes show behaviors as a function ofElaser that are consistent with the behavior of their first-order constituents, namely that different nanotubes contribute to the spectra at each value of Elaser. The behavior of the ‘D-band’ and G-band features show a very large phonon frequency dependence on Elaser and show a resonant 2D behavior when the electron and phonon wave vectors coincide, as also occurs in other sp2 carbons.

Future Raman studies are likely to explore the relation between the Stokes and the anti-Stokes spectra as a function of Elaser. Surface-enhanced Raman scattering (SERS) is likely to be explored as a method for achieving much higher sensitivity, allowing exploration of the vibrational spectra of a small number of nanotubes and perhaps even eventually the Raman spectrum of a single nanotube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W. Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187–191 (1997).

    Article  CAS  Google Scholar 

  2. M. A. Pimenta, A. Marucci, S. Empedocles, M. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 58, R16012–R16015 (1998).

    Article  Google Scholar 

  3. M. S. Dresselhaus, G. Dresselhaus, M. A. Pimenta, and P. C. Eklund. pages 367–434, Blackwell Science Ltd., Oxford, UK, 1999. Analytical Applications of Raman Spectroscopy.

    Google Scholar 

  4. Jean-Christophe Charlier. Private communication.

    Google Scholar 

  5. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature (London) 388, 756–758 (1997).

    CAS  Google Scholar 

  6. Y. Saito, Y. Tani, N. Miyagawa, K. Mitsushima, A. Kasuya, and Y. Nishina, Chem. Phys. Lett. 294, 593–598 (1998).

    Article  CAS  Google Scholar 

  7. M. Sugano, A. Kasuya, K. Tohji, Y. Saito, and Y. Nishina, Chem. Phys. Lett. 292, 575–579 (1998).

    Article  CAS  Google Scholar 

  8. H. Kuzmany, B. Burger, M. Hulman, J. Kurti, A. G. Rinzler, and R. E. Smalley, Europhys. Lett. 44, 518–524 (1998).

    Article  CAS  Google Scholar 

  9. A. Kasuya, M. Sugano, Y. Sasaki, T. Maeda, Y. Saito, K. Tohji, H. Takahashi, Y. Sasaki, M. Fukushima, Y. Nishina, and C. Horie, Phys. Rev. B 57, 4999 (1998).

    Article  CAS  Google Scholar 

  10. E. Anlaret, N. Bendiab, T. Guillard, C. Journet, G. Flamant, D. Laplaze, P. Bernier, and J-L Sauvajol, Carbon 36, 1815–1820 (1998).

    Google Scholar 

  11. H. Kuzmany, B. Burger, A. Thess, and R. E. Smalley, Carbon 36, 709–712 (1998).

    CAS  Google Scholar 

  12. S. D. M. Brown, P. Corio, A. Marucci, M. A. Pimenta, M. S. Dresselhaus, and G. Dresselhaus, (unpublished).

    Google Scholar 

  13. G. Dresselhaus, M. A. Pimenta, R. Saito, J.C. Charlier, S. D. M. Brown, P. Corio, A. Marucci, and M. S. Dresselhaus. In Science and Applications of Nanotubes, edited by D. Tománek and R. J. Enbody, Kluwer Academic, New York, 1999. Proceedings of the International Workshop on the Science and Applications of Nanotubes, Michigan State University, East Lansing, MI, USA, July 24–27, 1999.

    Google Scholar 

  14. H. Kataura, Y. Kumazawa, N. Kojima, Y. Maniwa, I. Umezu, S. Masubuchi, S. Kazama, X. Zhao, Y. Ando, Y. Ohtsuka, S. Suzuki, and Y. Achiba.In Proc. of the Int. Winter School on Electronic Properties of Novel Materials (IWEPNM’99), edited by H. Kuzmany, M. Mehring, and J. Fink, page unpublished (in press), American Institute of Physics, Woodbury, N.Y., 1999. AIP conference proceeding.

    Google Scholar 

  15. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, tScience of Fullerenes and Carbon Nanotubes (Academic Press, New York, NY, 1996).

    Google Scholar 

  16. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  17. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77–82 (1993).

    Article  CAS  Google Scholar 

  18. M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, and M. Endo, Phys. Rev. B 59, R6585 (1999).

    Article  CAS  Google Scholar 

  19. M. A. Pimenta, E. B. Hanlon, A. Marucci, P. Corio, S. D. M. Brown, S. Empedocles, M. Bawendi, G. Dresselhaus, and M. S. Dresselhaus, (unpublished).

    Google Scholar 

  20. M. S. Dresselhaus and G. Dresselhaus, Light Scattering in Solids III 51, 3 (1982). edited by M. Cardona and G. Güntherodt, Springer-Verlag Berlin, Topics in Applied Physics.

    Google Scholar 

  21. M. S. Dresselhaus, P. C. Eklund, and M. A. Pimenta. In Raman Scattering in Materials Science, edited by W. Weber and R. Merlin, Springer-Verlag, Berlin, 1999. in press.

    Google Scholar 

  22. P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon 33, 959 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dresselhaus, M. et al. (2002). First and Second-Order Resonant Raman Spectra of Single-Walled Carbon Nanotubes. In: Thorpe, M.F., Tománek, D., Enbody, R.J. (eds) Science and Application of Nanotubes. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47098-5_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-47098-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46372-3

  • Online ISBN: 978-0-306-47098-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics