Skip to main content

Impulse Heating an Intercalated Compound Using a 27.12 MHz Atmospheric Inductively Coupled Argon Plasma to Produce Nanotubular Structures

  • Chapter
  • 278 Accesses

Part of the book series: Fundamental Materials Research ((FMRE))

Conclusions

We have shown that impulse heating a covalently intercalated compound in inert gas environment yields closed nanotube structures in the exfoliated graphite. Treated with FeCl3 and reheated, open nanotubular and nanoencapsulated structures are identified by TEM. This opens an exciting area of research in that a variety of intercalated compounds could be tested as precursors and several metals (Ni, Co, etc.) could be examined in the heating stage. The impulse heating of intercalated nonmetal compounds to produce nanotubular structures could also be extended to the carbon arc and laser ablation techniques.

From past work with carbon arcs, parameters such as gas pressure, voltage, current density and electrode gap were optimized to maximize fullerene and nanotube production. Other techniques have conditions that need to be optimized to produce certain types of spherical (C60, C70, etc.) or tubular allotropes (single wall, multi-wall, etc.) of carbon. This work shows that two other parameters, carbon hybridization (sp 2 vs. sp3) and the distance between graphite layers in the starting material, can also be influential in the production of certain nanoscale structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ebbesen, Carbon Nanotubes (CRC Press) (1997) p. 139ff

    Google Scholar 

  2. S. Iijima, Nature 354, 56, 1991

    Article  CAS  Google Scholar 

  3. J. Haggerty, in Laser Induced Chemical Processes, edited by J. Steinfeld (Plenum Press, New York, 1981)

    Google Scholar 

  4. R. Fantoni, E. Borsella, S. Enzo SPIE 1279, 77 (1990)

    CAS  Google Scholar 

  5. P. Buerki, T. Troxler, S. Leutwyler,, in High Temperature Science (Humina Press Inc. 1990) vol. 27, p. 323

    Google Scholar 

  6. F. Curcio, G. Ghiglione, M. Musci, C. Nannetti, Appl. Surf. Sci., 36, 52–58 (1989)

    Article  Google Scholar 

  7. G. Rice and R. Woodlin, J. Am. Ceram. Soc. 71, C181 (1988)

    Article  CAS  Google Scholar 

  8. F. Curcio, M. Musci, N. Notaro, Appl. Surf. Sci. 46, 225–229 (1990)

    Article  CAS  Google Scholar 

  9. R. Fiato, G. Rice, S. Miseo, S. Soled, United States Patent, 4,637,753 (1987)

    Google Scholar 

  10. G. Rice, R. Fiato, S. Soled, United States Patent 4,659,681 (1987)

    Google Scholar 

  11. X. Bi, B. Ganguly, G. Huffman, F. Huggins, M. Endo, P. Eklund, J. Mater. Res., vol. 8, 1666 (1993)

    CAS  Google Scholar 

  12. T. Manning, M. Mitchell, J. Stach, T. Vickers, Carbon vol. 37, 1159 (1999)

    Article  CAS  Google Scholar 

  13. H. Jimenez, J. Speck, G. Roth, M. Dresselhaus, Carbon, 24 627–633 (1986)

    Google Scholar 

  14. K. Kinoshite, Carbon, Electrochemical and Physicochemical Properties, Wiley Interscience 1988, p. 207

    Google Scholar 

  15. K. Kinoshite, Carbon, Electrochemical and Physicochemical Properties, Wiley Interscience 1988, p. 215

    Google Scholar 

  16. M.S. Dresselhaus, and Dresselhaus, G., Adv. Phys., 1981, 30, 139–326

    Article  CAS  Google Scholar 

  17. S. Anderson, D. Chung, Carbon, 1984, 22, 253

    CAS  Google Scholar 

  18. W. Martin, Brocklehurst, J., Carbon 1964, 1, 133

    Article  Google Scholar 

  19. C. Mazieres, G. Colin, Jegoudez and R. Setton, Carbon 1975, 13, 289

    Article  CAS  Google Scholar 

  20. C. Mazieres, G. Colin, J. Jegoudez, and R. Setton, Carbon, 1976, 14, 176

    Article  CAS  Google Scholar 

  21. R.E. Stevens, S. Ross, and S. Wesson, Carbon, 1973, 11, 525

    CAS  Google Scholar 

  22. M. Dowell, Ext. Abs. Program, 12 th Bienn. Conf. Carbon, p. 31, American Carbon Society, 1975, p. 31

    Google Scholar 

  23. H. Mikami, Japanese Patent No. 76 96,793. 1976

    Google Scholar 

  24. M. Inagaki, K. Muramastu, Y. Maeda, Maekawa, K., Synthetic Metals, 1983, 8, 335

    Article  CAS  Google Scholar 

  25. D. Berger, J. Maire, Mater. Sci. Eng., 1977, 31, 335

    CAS  Google Scholar 

  26. Union Carbide, US Patent No. 3,404,061. 1968

    Google Scholar 

  27. J. Wang, Electrochimica Acta, 1981, 26, 1721

    Article  CAS  Google Scholar 

  28. V. Norvell, G. Mamantov, Anal. Chem. 1977, 49, 1470

    Article  CAS  Google Scholar 

  29. T. J. Manning, US Patent No. #4,968,142, 1991

    Google Scholar 

  30. T. J. Manning, Appl. Spec., 156 (1990)

    Google Scholar 

  31. H. Touhara, K. Kadono, M. Endo, N. Watanabe, Proceedings of Carbon 84, Extended Abstracts (Bordeaux, France, July 2–6th) p.278 (1984)

    Google Scholar 

  32. T.W. Ebbesen, Annu. Rev. Mater: Sci. 24, 235, 1994

    Article  CAS  Google Scholar 

  33. M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, Santiesteban, J.G., Appl. Phys. Lett. 62, 657, 1993

    CAS  Google Scholar 

  34. M. Endo, H. Ueno, in Extended Abstracts of the 1984 MRS Symposium on Graphite Intercalation Compounds, Eklund, P.C., M.S. Dresselhaus, M.S., G., Eds., Materials Research Society, Pittsburgh, PA, 1984, 177

    Google Scholar 

  35. S. Iijima, T. Ichihashi, Nature 363, 603, 1993

    Article  CAS  Google Scholar 

  36. D.S. Bethune, C.H. Kiang, M.S. de Vires, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605, 1993

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Manning, T.J. et al. (2002). Impulse Heating an Intercalated Compound Using a 27.12 MHz Atmospheric Inductively Coupled Argon Plasma to Produce Nanotubular Structures. In: Thorpe, M.F., Tománek, D., Enbody, R.J. (eds) Science and Application of Nanotubes. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47098-5_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47098-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46372-3

  • Online ISBN: 978-0-306-47098-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics