Skip to main content

Lessons Learned from The Mouse Model of Short-Chain Acyl-CoA Dehydrogenase Deficiency

  • Chapter
Current Views of Fatty Acid Oxidation and Ketogenesis

Summary

The SCAD deficient mouse model has been useful to investigate mechanisms of deficient fatty acid oxidation disease in human patients. This mouse model has been thor-oughly characterized and is readily available from the Jackson Laboratory. Using the new technologies of gene-knockout mouse modeling, we envisage developing additional members of the acyl-CoA dehydrogenase family of enzyme deficiencies in mice and fur-thering our understanding of fatty acid metabolism in health and disease.26

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seeley, T.-L. & Holmes, R.S. (1981) Biochem. Genet., 19, 333–345 Genetics and ontogeny of butyryl CoA dehydrogenase in the mouse and linkage of Bcd-1 with Dao-1.

    Article  CAS  PubMed  Google Scholar 

  2. Prochazka, M. & Leiter, E.H. (1986) Mouse News Lett., 78, 31. A null activity variant found at the butyryl CoA dehydrogenase (Bcd-1) locus in BALB/cByJ mice.

    Google Scholar 

  3. Wood, P.A., Amendt, B.A., Rhead, W.J., Millington, D.S., Inoue, F. & Armstrong, D. (1989) Pediatr. Res., 25, 38–43. Short-chain acyl-coenzyme A dehydrogenase deficiency in mice.

    CAS  PubMed  Google Scholar 

  4. Amendt, B.A., Greene, C, Sweetman, L., Cloherty, J., Shih, V., Moon, A., Teel, L. & Rhead, W.J. (1987) J. Clin. Invest., 79, 1303–1309. Short-chain acyl-coenzyme A dehydrogenase deficiency.

    CAS  PubMed  Google Scholar 

  5. Schiffer, S.P., Prochazka, M., Jezyk, P.F., Roderick, T.H., Yudkoff, M. & Patterson, D.F. (1989) Biochem. Genet., 27, 47–58. Organic aciduria and butyryl CoA dehydrogenase deficiency in BALB/cByJ mice.

    Article  CAS  PubMed  Google Scholar 

  6. Reue, K. & Cohen, R.D. (1996) Mammalian Genome, 7, 694–695. Acads gene deletion in BALB/cByJ mouse strain occurred after 1981 and is not present in BALB/cByJ-fld mutant mice.

    Article  CAS  PubMed  Google Scholar 

  7. Les, E.P. (Fall 1990) JAX Notes No.443, 2–4. A brief history of the two substrains of BALB/c, BALB/cJ and BALB/cByJ available from the Jackson Laboratory.

    Google Scholar 

  8. Amendt, B.A., Freneaux, E., Reece, C., Wood, P.A. & Rhead, W.J. (1992) Pediatr. Res., 31, 552–556. Short-chain acyl-coenzyme A dehydrogenase activity, antigen and biosynthesis are absent in the BALB/cByJ mouse.

    CAS  PubMed  Google Scholar 

  9. Armstrong, D.L., Masiowski, M.L. & Wood, P.A. (1993) Am. J. Med. Genet, 47, 884–892. Pathologic characterization of short-chain acyl-CoA dehydrogenase deficiency in BALB/cByJ mice.

    Article  CAS  PubMed  Google Scholar 

  10. Kelly, C.L., Hinsdale, M.E. & Wood, P.A. (1993) Genomics 18, 137–140. Cloning and characterization of mouse short-chain acyl-CoA dehydrogenase cDNA.

    Article  CAS  PubMed  Google Scholar 

  11. Kelly, C.L. & Wood, P.A. (1996) Mammalian Genome, 7, 262–264. Cloning and characterization of the mouse short-chain acyl-CoA dehydrogenase gene.

    Article  CAS  PubMed  Google Scholar 

  12. Hinsdale, M.E., Kelly, C.L. & Wood, P.A. (1993) Genomics 16, 605–611. Null allele at bcd-1 locus in BALB/cByJ mice is due to a deletion in the short-chain acyl-CoA dehydrogenase gene and results in missplicing of mRNA.

    Article  CAS  PubMed  Google Scholar 

  13. Wood, P.A., Hinsdale, M.E. & Kelly, C.L. (1993) Mouse Genome 91, 342–344. Molecular detection of the Bcd-1 null allele in BALB/cByJ mice by polymerase chain reaction: A simple assay for genetic monitoring.

    Google Scholar 

  14. Corydon, M.J., Andresen, B.S., Bross, P., Kjeldsen, M., Andreasen, P.H., Eiberg, H., Kolvraa, S. & Gregerson, N. (1997) Mammalian Genome 8, 922–926. Structural organization of the human short-chain acyl-CoA dehydrogenase gene.

    CAS  PubMed  Google Scholar 

  15. Gregersen, N., Winter, VS., Corydon, M.J., Corydon, T.J., Rinaldo, P., Ribes, A., Martinez, G, Bennett, M.J., Vianeysaban, C, Bhala, A., Hale, D.E., Lehnert, W, Kmoch, S., Roig, M., Riudor, E., Eiberg, H., Andresen, B.S., Bross, P., Bolund, L.A. & Kolvraa, S. (1998) Hum. Mol. Genet., 7, 619–627. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients-One of the variant alleles 511C-〉 T is present at an unexpectedly high frequency in the general population, as was the case for 625G-〉 A, together conferring susceptibility to ethylmalonic aciduria.

    Article  CAS  PubMed  Google Scholar 

  16. Naito, E., Indo, Y. & Tanaka, K. (1990) J. Clin. Invest., 85, 1575–1582. Identification of two variant short chain acyl-coenzyme A dehydrogenase alleles, each containing a different point mutation in a patient with short chain acyl-coenzyme A dehydrogenase deficiency.

    CAS  PubMed  Google Scholar 

  17. Kelly, D.P., Whelan, A.J., Ogden, M.L., Alpers, R., Zhang, Z., Bellus, G, Gregersen, N., Dorland, L. & Strauss, A.W. (1990) Proc. Natl. Acad. Sci. USA, 87, 9236–9240. Molecular characterization of inherited medium-chain acyl-CoA dehydrogenase deficiency.

    CAS  PubMed  Google Scholar 

  18. Zhang, Z.F., Kelly, D.P., Kim, J.J., Zhou, Y.Q., Ogden, M.L., Whelan, A.J. & Strauss, A.W. (1992) Biochemistry, 31, 81–89. Structural organization and regulatory regions of the human medium-chain acyl-CoA dehydrogenase gene.

    CAS  PubMed  Google Scholar 

  19. Yamanaka, H., Ueshima, Y., Nakajima, T., Yoshida, N., Inoue, F, Kodo, N., Kinugasa, A. & Sawada, T. (1992) J. Inherited Metab. Dis., 15, 353–355. Gluconeogenesis and ketogenesis in perfused livers from short-chain acyl-CoA dehydrogenase-deficient mice.

    CAS  PubMed  Google Scholar 

  20. Hinsdale, M.E., Hamm, D.A. & Wood, PA. (1996) Biochem. Mol. Med., 57, 106–115. Effects of shortchain acyl-CoA dehydrogenase deficiency on developmental expression of metabolic enzyme genes in the mouse.

    Article  CAS  PubMed  Google Scholar 

  21. Qureshi, I.A., Ratnakumari, L., Michalak, A., Giguere, R., Cyr, D. & Butterworth, R.F. (1993) Biochem. Med. Metab. Biol., 50, 145–158. A profile of cerebral and hepatic carnitine, ammonia, and energy metabolism in a model of organic aciduria: BALB/cByJ mouse with short-chain acyl-CoA dehydrogenase deficiency.

    Article  CAS  PubMed  Google Scholar 

  22. Qureshi, I.A., LeBlanc, D., Cyr, D., Giguere, R. & Mitchell, G. (1993) Biochem. Biophys. Res. Commun. 191, 744–749. Breeding experiments to combine the X-linked sparse-fur (spf) mutation with the autosomal recessive BALB/cByJ strain: Testing the biochemical phenotype of double-mutant mice as a model for ammonia:fatty acyl CoA synergism.

    Article  CAS  PubMed  Google Scholar 

  23. Rao, K.V.R. & Qureshi, I.A. (1997) Can. J. Physiol. Pharmacol., 75, 423–4360. Decompensation of hepatic and cerebral acyl-CoA metabolism in BALB/cByJ mice by chronic riboflavin deficiency: restoration by acetyl-L-carnitine.

    Article  CAS  PubMed  Google Scholar 

  24. Kelly, C.L., Rhead, W.J., Kutschke, W.K., Brix, A.E., Hamm, D.A., Pinkert, C.A., Lindsey, J.R. & Wood, PA. (1997) Hum. Mol. Genet., 6, 1451–1455. Functional correction of short-chain acyl-CoA dehydro-genase deficiency in transgenic mice: Implications for gene therapy of human mitochondrial enzyme deficiencies.

    Article  CAS  PubMed  Google Scholar 

  25. Park, E.I., Paisley, E.A., Mangian, H.J., Swartz, D.A., Wu, M., O’Morchoe, P.J., Behr, S.R., Visek, W.J. & Kaput, J. (1997) J. Nutrition, 127, 566–573. Lipid level and type alter stearoyl CoA desaturase mRNA abundance differently in mice with distinct susceptibilities to diet-influenced diseases.

    CAS  Google Scholar 

  26. Wood, P.A., Farmer, S.C., Tolwani, R.J., Warren, J.R., Steinkampf, M.P., Johnson, L.W., Mountz, J.D. & Kelly, D.P. (1992) “in” New developments in fatty acid oxidation, (Coates, P.M. & Tanaka, K. eds.) Wiley-Liss, New York, pp. 151–160. Molecular studies of mouse medium and long-chain acyl-CoA dehydrogenase genes for-site-directed mutagenesis of embryonic stem cells.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wood, P.A., Kelly-Kurtz, C.L., Hinsdale, M.E., Hamm, D.A., Rhead, W.J. (2002). Lessons Learned from The Mouse Model of Short-Chain Acyl-CoA Dehydrogenase Deficiency. In: Quant, P.A., Eaton, S. (eds) Current Views of Fatty Acid Oxidation and Ketogenesis. Advances in Experimental Medicine and Biology, vol 466. Springer, Boston, MA. https://doi.org/10.1007/0-306-46818-2_46

Download citation

  • DOI: https://doi.org/10.1007/0-306-46818-2_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46200-9

  • Online ISBN: 978-0-306-46818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics