Skip to main content

Abstract

The role of land surface processes in land falling tropical cyclones is an area of emerging interest. Tropical cyclones are formed as organized convection over warm water (typically 26.5 °C, Gray, 1968) packing tremendous amounts of energy. Tropical cyclones have a typical size of 200-2000 km with a life span of about one to two weeks. The cyclone and its environment are interlinked. There are a number of environmental factors that are important for sustaining and intensifying a tropical cyclone including low humidity, cooler sea surface temperature (SST), or higher tropopause temperatures, dry air intrusion from land masses, and large vertical wind shear (Gray, 1968; McBride and Zehr, 1981). However a number of environmental conditions can change the evolution of a landfalling storm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpert, P., D. Niyogi, R.A. Pielke Sr., J.L. Eastman, Y.K. Xue and S. Raman, 2006: Evidence for carbon dioxide and moisture interactions from the leaf cell up to global scales: Perspective on human-caused climate change. Global and Planetary Change, 54(1–2), 202-208, ISSN 0921-8181.

    Article  Google Scholar 

  • Avissar, R. and Y. Liu, 1996: Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. Journal of Geophysical Research: Atmospheres (1984–2012), 101(D3), 7499-7518.

    Article  Google Scholar 

  • Ball, J.T., I.E. Woodrow and J.A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer Netherlands.

    Google Scholar 

  • Barale, V., 2010: Oceanography from Space: Revisited. Springer. p. 263. ISBN 978-90-481-8680-8.

    Google Scholar 

  • Beljaars, A.C., P. Viterbo, M.J. Miller and A.K. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Monthly Weather Review, 124, 362-383.

    Article  Google Scholar 

  • Betts, A.K., F. Chen, K. Mitchell and Z. Janjic, 1997: Assessment of land surface and boundary layer models in two operational versions of the NCEP Eta Model using FIFE data. Mon. Wea. Rev., 125, 2896-2915.

    Article  Google Scholar 

  • Bonan, G.B., 1995: Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. Journal of Geophysical Research: Atmospheres (1984–2012), 100(D2), 2817-2831.

    Article  Google Scholar 

  • Bonan, G.B., 2008: Ecological Climatology: Concepts and Applications. 2nd edition. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Boone, A. et al., 2004: The Rhone-aggregation land surface scheme intercomparison project: An overview. Journal of Climate, 17, 187-208.

    Article  Google Scholar 

  • Briegel, L.M. and W.M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397-1413.

    Article  Google Scholar 

  • Chang, H.-I., 2009: Effect of land-atmosphere interactions on mesoscale convection and precipitation over the Indian monsoon region. Ph.D., Purdue University.

    Google Scholar 

  • Charusombat, U. et al., 2012: Noah-GEM and Land Data Assimilation System (LDAS) based downscaling of global reanalysis surface fields: Evaluations using observations from a CarboEurope agricultural site. Computers and Electronics in Agriculture, 86, 55-74.

    Article  Google Scholar 

  • Chase, T.N., R.A. Pielke, T.G. Kittel, J.S. Baron and T.J. Stohlgren, 1999: Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains. Journal of Geophysical Research: Atmospheres (1984–2012), 104(D14), 16673-16690.

    Article  Google Scholar 

  • Chen, F., K. Mitchell, J. Schaake, Y. Xue, H.L. Pan, V. Koren, Q.Y. Duan, K. Ek and A. Betts, 1996: Modeling of Land-Surface Evaporation by Four Schemes and Comparison with FIFE Observations. J. Geophys. Res., 101, 7251-7268.

    Article  Google Scholar 

  • Chen, F., Z. Janjić and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary-Layer Meteorology, 85(3), 391-421.

    Article  Google Scholar 

  • Chen, F. and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129, 569-585.

    Article  Google Scholar 

  • Chen, F., Z. Janjić and K.E. Mitchell, 2007: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary Layer Meteorol., 85, 391-421.

    Article  Google Scholar 

  • Chen, F., H. Kusaka, R. Bornstein, J. Ching, C.S.B. Grimmond, S. Grossman-Clarke, T. Loridan, K.W. Manning, A. Martilli, S. Miao and D. Sailor, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31(2), 273-288.

    Article  Google Scholar 

  • Deardorff, J., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research: Oceans (1978–2012), 83, 1889-1903

    Article  Google Scholar 

  • Dickinson, R.E., 1983: Land surface processes and climate-surface albedos and energy balance. Adv. Geophys., 25, 305-353.

    Article  Google Scholar 

  • Doran, J.C. and S. Zhong, 2000: A study of the effects of sub-grid-scale land use differences on atmospheric stability in prestorm environments. Journal of Geophysical Research: Atmospheres (1984–2012), 105(D7), 9381-9392.

    Article  Google Scholar 

  • Ek, M. et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres (1984–2012), 108.

    Google Scholar 

  • Emanuel, K., 2000: A Statistical Analysis of Tropical Cyclone Intensity. Mon. Wea. Rev., 128, 1139-1152.

    Article  Google Scholar 

  • Emanuel, K., C. DesAutels, C. Holloway and R. Korty, 2004: Environmental control of tropical cyclone intensity. Journal of the Atmospheric Sciences, 61, 843-858.

    Article  Google Scholar 

  • Emanuel, K., S. Ravela, E. Vivant and C. Risi, 2006: A Statistical Deterministic Approach to Hurricane Risk Assessment. Bull. Amer. Meteor. Soc., 87, 299-314.

    Article  Google Scholar 

  • Emanuel, K., J. Callaghan and P. Otto, 2008: A Hypothesis for the Redevelopment of Warm-Core Cyclones over Northern Australia. Monthly Weather Review, 136, 3863-3872.

    Article  Google Scholar 

  • Feddema, J.J., K.W. Oleson, G.B. Bonan, L.O. Mearns, L.E. Buja, G.A. Meehl and W.M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310(5754), 1674-1678.

    Article  Google Scholar 

  • Frank, W.M. and P.E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 2397-2417.

    Article  Google Scholar 

  • Flerchinger, G.N. and K.E. Saxton, 1989: Simultaneous heat and water model of a freezing snow-residue-soil system. I: Theory and development. Trans. ASAE, 32(2), 565-571.

    Article  Google Scholar 

  • Gascoin, S., 2009: Etude des paramétrisations hydrologiques d’un modèle de surface continentale: Importance des aquifères et des premiers centimètres du sol. Ph.D. thesis, Université Pierre et Marie Curie - Paris VI.

    Google Scholar 

  • Gray, W.M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.

    Article  Google Scholar 

  • Gutman, G. and A. Ignatov, 1998: The derivation of green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 1533-1543.

    Article  Google Scholar 

  • Kaplan, J. and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. Journal of Applied Meteorology, 34(11), 2499-2512.

    Article  Google Scholar 

  • Koren, V., J.C. Schaake, K.E. Mitchell, Q.Y. Duan, F. Chen and J. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19,569-19,585.

    Article  Google Scholar 

  • Kurihara, Y. and R.E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. Journal of the Atmospheric Sciences, 31(4), 893-919.

    Article  Google Scholar 

  • Liu, X., F. Chen, M. Barlage, G.S. Zhou and D. Niyogi, 2015: Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling systems. 2015 Fall Meeting, AGU, San Francisco, CA, Dec 2015.

    Google Scholar 

  • Lunardini, V.J., 1981: Heat Transfer in Cold Climates. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Mahfouf, J-F., E. Richard and P. Mascart, 1987: The influence of soil and vegetation on the development of mesoscale circulations. J. Climate Appl. Meteor., 26, 1483-1495.

    Article  Google Scholar 

  • Mahrt, L. and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222-234.

    Article  Google Scholar 

  • Mahrt, L. and H. Pan, 1984: A two-layer model of soil hydrology. Boundary-Layer Meteorology, 29(1), 1-20.

    Article  Google Scholar 

  • Manabe, S., 1969: Climate and the ocean circulation 1. Monthly Weather Review, 97, 739-774.

    Article  Google Scholar 

  • Marks, F.D. and L.K. Shay, 1998: Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities. Bull. Amer. Meteor. Soc., 79, 305-323.

    Article  Google Scholar 

  • McBride, J.L. and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132-1151.

    Article  Google Scholar 

  • Monteith, J., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 4.

    Google Scholar 

  • Monteith, J. and M. Unsworth, 1990: Principles of environmental physics. E. Arnold. London; New York. Distributed in the USA by Routledge. Chapman and Hall.

    Google Scholar 

  • Niu, G.Y. et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research: Atmospheres (1984–2012), 116.

    Google Scholar 

  • Niyogi, D., K. Alapaty, S. Raman and F. Chen, 2009: Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. Journal of Applied Meteorology and Climatology, 48, 349-368.

    Article  Google Scholar 

  • Noilhan, J. and S. Planton, 1989: A Simple Parameterization of Land Surface Processes for Meteorological Models. Monthly Weather Review, 117, 536-549.

    Article  Google Scholar 

  • Pan, H.L. and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Boundary-Layer Meteorology, 38(1-2), 185-202.

    Article  Google Scholar 

  • Penman, H.L. 1948: Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120-145.

    Article  Google Scholar 

  • Peters-Lidard, C.D., M.S. Zion and E.F. Wood, 1997: A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes. J. Geophys. Res., 102, 4303-4324.

    Article  Google Scholar 

  • Peters-Lidard, C.D., E. Blackburn, X. Liang and E.F. Wood, 1998: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55, 1209-1224.

    Article  Google Scholar 

  • Pielke, R.A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Reviews of Geophysics, 39, 151-177.

    Article  Google Scholar 

  • Pielke, R.A., G.A. Dalu, J.S. Snook, T.J. Lee and T.G.F. Kittel, 1991: Nonlinear Influence of Mesoscale Land Use on Weather and Climate. J. Climate, 4, 1053–1069.

    Article  Google Scholar 

  • Pitman, A., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23, 479-510.

    Article  Google Scholar 

  • Prandtl, L., 1905: On fluid motions with very small friction. Int. Math. -Kongr., Heidelberg.

    Google Scholar 

  • Ramsay, B.H., 1998: The interactive multi-sensor snow and ice mapping system. Hydrol. Processes, 12, 1537-1546.

    Article  Google Scholar 

  • Robinson, D.A. and G. Kukla, 1985: Maximum surface albedo of seasonally snow covered lands in the Northern Hemisphere. J. Clim. Appl. Meteorol., 24, 402-411.

    Article  Google Scholar 

  • Schade, L.R. and K.A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. Journal of the Atmospheric Sciences, 56(4), 642-651.

    Article  Google Scholar 

  • Schaake, J.C., V.I. Koren, Q.Y. Duan, K. Mitchell and F. Chen, 1996: A simple water balance model (SWB) for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 7461-7475.

    Article  Google Scholar 

  • Sellers, P.J., Y. Mintz, Y.C. Sud and A. Dalcher, 1986: A Simple Biosphere Model (SIB) for Use within General Circulation Models. J. Atmos. Sci., 43, 505-531.

    Article  Google Scholar 

  • Sellers, P.J., J.A. Berry, G.J. Collatz, C.B. Field and F.G. Hall, 1992: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. 42, 187-216.

    Google Scholar 

  • Sellers, P.J., D.A. Randall, G.J. Collatz, J.A. Berry, C.B. Field, D.A. Dazlich, C. Zhang, G.D. Collelo and L. Bounoua, 1996: A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation. J. Climate, 9, 676-705.

    Article  Google Scholar 

  • Stull, R.B., 1988: An introduction to boundary layer meteorology (Vol. 13). Springer.

    Google Scholar 

  • Trenberth, K.E., J.T. Fasullo and J. Kiehl, 2009: Earth’s Global Energy Budget. Bulletin of the American Meteorological Society, 90, 311-323.

    Article  Google Scholar 

  • Tuleya, R.E., 1994: Tropical Storm Development and Decay - Sensitivity to Surface Boundary Conditions. Monthly Weather Review, 122, 291-304.

    Article  Google Scholar 

  • Viterbo, P. and A.K. Betts, 1999: Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. Journal of Geophysical Research: Atmospheres (1984–2012), 104, 27803-27810.

    Article  Google Scholar 

  • Weaver, C.P. and R. Avissar, 2001: Atmospheric disturbances caused by human modification of the landscape. Bulletin of the American Meteorological Society, 82(2), 269-281.

    Article  Google Scholar 

  • Werth, D. and R. Avissar, 2005: The local and global effects of Southeast Asian deforestation. Geophys. Res. Lett., 32, L20702, doi:10.1029/2005GL022970.

    Article  Google Scholar 

  • Yang, Z.-L., 2004: Modeling land surface processes in short-term weather and climate studies. Vol. 3, World Scientific Series on Meteorology of East Asia.

    Google Scholar 

  • Yang, Z.L. et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. Journal of Geophysical Research: Atmospheres (1984–2012), 116(D12).

    Google Scholar 

  • Zehnder, J.A., 1991: The interaction of planetary-scale tropical easterly waves with topography: A mechanism for the initiation of tropical cyclones. J. Atmos. Sci., 48, 1217-1230.

    Article  Google Scholar 

  • Zhong, S. and J.C. Doran, 1998: An evaluation of the importance of surface flux variability on GCM-scale boundary-layer characteristics using realistic meteorological and surface forcing. Journal of Climate, 11(11), 2774-2788.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given by the US National Science Foundation (NSF CAREER AGS-0847472), the Indian National Center for Ocean Information Services (INCOIS), MoES and the Earth System Science Organization, Ministry of Earth Sciences, Government of India (Grant no./Project no MM/SERP/CNRS/2013/INT-10/002) to conduct this research under Monsoon Mission.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Capital Publishing Company

About this chapter

Cite this chapter

Niyogi, D., Subramanian, S., Osuri, K.K. (2016). The Role of Land Surface Processes on Tropical Cyclones: Introduction to Land Surface Models. In: Mohanty, U.C., Gopalakrishnan, S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht. https://doi.org/10.5822/978-94-024-0896-6_8

Download citation

Publish with us

Policies and ethics