Skip to main content

The Hurricane Boundary Layer

  • Chapter

Abstract

The planetary boundary layer (PBL) within the troposphere of the atmosphere regulates the transfer of heat, moisture, and momentum between the atmosphere and the surface through drag effects, turbulent diffusion, and mixing processes (Stull, 1988; Garrat, 1994). The PBL is the layer of the atmosphere closest to the Earth and is therefore directly influenced by effects of the surface (friction, heating, cooling, evapotranspiration, etc.). Therefore, almost all the weather generation processes originate in the PBL. It is variously defined as a continental PBL or marine boundary layer (MBL) according to its location and secondly, as stable, neutral, or unstable, depending upon the degree of turbulence. The Hurricane Boundary Layer (HBL) is a special class of the MBL that refers to the bottom layer of the atmosphere in tropical cyclones (TCs). However, there are features unique to the HBL that has made modelling and understanding it one of the largest challenges facing the tropical cyclone forecasting community. Until recently, the risks to humans and scientific equipment associated with the extreme conditions in the HBL prevented the collection of high-quality observations in the HBL. Secondly, numerical models did not possess adequate resolution to model the HBL processes. Also there is a lack of understanding on the connection between the HBL structure and tropical cyclone intensity changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We will postpone the precise definition on the height of the HBL to section 4. Until then we refer to the lowest 2 km as the HBL in this text.

  2. 2.

    Depth of the inflow layer (hinfl or δ) is generally adopted to be the height of the hurricane boundary layer. However, significant turbulence and mixing may occur above this layer, especially in the eyewall region.

  3. 3.

    In advanced numerical models, the exchange coefficients are a function of stability and the roughness lengths for momentum, heat and moisture.

  4. 4.

    The depth of the inflow in this study was taken to be the height where the radial wind velocity is reduced to about 3 ms-1. Significant inflow above the boundary layer is not uncommon (e.g., Willoughby 1979).

References

  • Aberson, S.D., M.L. Black, R.A. Black, J.J. Cione, C.W. Landsea, F.D. Marks and R.W. Burpee, 2006a: Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87, 1039-1055.

    Article  Google Scholar 

  • Aberson, S.D., M.L. Black, M.T. Montgomery and M. Bell, 2006b: Hurricane Isabel (2003): New insights into the physics of intense storms. Part II: Extreme localized wind. Bull. Amer. Meteor. Soc., 87, 1349-1354.

    Article  Google Scholar 

  • Andreas, E.L. and K.A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58(24), 3741-3751.

    Article  Google Scholar 

  • Anthes, R.A. and S.W. Chang, 1978: Response of the hurricane boundary layer to changes of sea-surface temperature in a numerical model. J. Atmos. Sci., 35, 1240-1255.

    Article  Google Scholar 

  • Barnes, G.M. and M.D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 2348-2368.

    Article  Google Scholar 

  • Bao, J.-W., J.M. Wilczak, J.-K. Choi and L.H. Kantha, 2000: Numerical simulations of air-sea interaction under high-wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190-2210.

    Article  Google Scholar 

  • Bender, M.A., I. Ginis, R.E. Tuleya, B. Thomas and T. Marchok, 2007: The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 3965-3989.

    Article  Google Scholar 

  • Black, M.L., J.F. Gamache, F.D. Marks, C.E. Samsury and H.E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291-2312.

    Article  Google Scholar 

  • Black, P.G. et al., 2007: Air-sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357-374.

    Article  Google Scholar 

  • Braun, S.A. and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961.

    Article  Google Scholar 

  • Bryan, G.H. and R. Rotunno, 2009a: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 1770-1789.

    Article  Google Scholar 

  • Bryan, G.H. and R. Rotunno, 2009b: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 3042-3060.

    Article  Google Scholar 

  • Bryan, George H., 2011: Comments on Sensitivity of tropical-cyclone models to the surface drag-coefficient http://www.mmm.ucar.edu/people/bryan/Papers/bryan_2011_qjrms_submitted.pdf

  • Cione, J.J., P.G. Black and S.H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550-1561.

    Article  Google Scholar 

  • Donelan, M.A., B.K. Haus, N. Reul, W.J. Plant, M. Stiassnie, H.C. Graber, O.B. Brown and E.S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    Article  Google Scholar 

  • Drennan, W.M., J.A. Zhang, J.R. French, C. Mccormick and P.G. Black, 2007: Turbulent Fluxes in the Hurricane Boundary Layer. Part II: Latent Heat Flux. J. Atmos. Sci., 64,1103-1115.

    Article  Google Scholar 

  • Emanuel, K.A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585-604.

    Article  Google Scholar 

  • Emanuel, K.A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.

    Article  Google Scholar 

  • Emanuel, K.A., 2003: A century of scientific progress. In: Hurricane! Coping with Disaster. R. Simpson, R. Anthes and M. Garstang (Eds). Special Publication, Vol. 55, Amer. Geophys. Union, 177-216.

    Google Scholar 

  • Fan, Y., I. Ginis, T. Hara, C.W. Wright and E. Walsh, 2009b: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 2097-2116.

    Article  Google Scholar 

  • Fan, Y., I. Ginis and T. Hara, 2009a: The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones. J. Phys. Oceanogr., 39, 1019-1034.

    Article  Google Scholar 

  • Foster, R.C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 2647-2661.

    Article  Google Scholar 

  • Gamache, J.F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422-423.

    Google Scholar 

  • Gamache, J.F., R.A. Houze Jr. and F.D. Marks Jr., 1993: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50, 3221-3243.

    Article  Google Scholar 

  • Ginis, I., W. Shen and M.A. Bender, 1999: Performance evaluation of the GFDL coupled hurricane ocean prediction system in the Atlantic basin. Preprints, 23rd Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 607-610.

    Google Scholar 

  • Gopalakrishnan, G., S. Baidya Roy and R. Avissar, 2000: An evaluation of the scale at which topographical features affect the convective boundary layer using large eddy simulations. J. Atmos. Sci. (USA), 57(2), 334-351.

    Article  Google Scholar 

  • Gopalakrishnan, S.G. and R. Avissar, 2000: An LES study of the impacts of land surface heterogeneity on dispersion in the convective boundary layer. J. Atmos. Sci. (USA), 57(2), 352-371.

    Article  Google Scholar 

  • Gopalakrishnan, S.G., F.D. Marks, X. Zhang, J.-W. Bao, K.-S. Yeh and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 1762-1784.

    Article  Google Scholar 

  • Gopalakrishnan, S.G., S. Goldenberg, T. Quirino, F. Marks, X. Zhang, K.-S. Yeh, R. Atlas and V. Tallapragada, 2012: Towards improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647-666.

    Article  Google Scholar 

  • Kepert, J.D. and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 2485-2501.

    Article  Google Scholar 

  • Kepert, J.D., 2010: Comparing slab and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136, 1689-1699.

    Google Scholar 

  • Kurihara, Y. and R.E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation. J. Atmos. Sci., 31, 893-919.

    Article  Google Scholar 

  • Lorsolo, S., J. Zhang, F.D. Marks and J.F. Gamache, 2010: Estimation and Mapping of Hurricane Turbulent Energy Using Airborne Doppler Measurements. Mon. Wea. Rev., 138, 3656-3670.

    Article  Google Scholar 

  • Malkus, J.S. and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1-20.

    Article  Google Scholar 

  • Marks, F.D., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909-930.

    Article  Google Scholar 

  • Marks, F.D. and R.A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos.Sci., 44, 1296-1317.

    Article  Google Scholar 

  • Marks, F.D. and L.K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305-323.

    Article  Google Scholar 

  • Marks, F.D., R.A. Houze Jr. and J.F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919-942.

    Article  Google Scholar 

  • Marks, F.D., P.G. Black, M.T. Montgomery and R.W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237-1259.

    Article  Google Scholar 

  • Montgomery, M.T., M.M. Bell, S.D. Aberson and M.L. Black, 2006: New insights into the Physics of Intense storms. Part I: Mean Vortex Structure and Maximum Intensity Estimates. Bull. Amer. Meteor. Soc., 87, 1335-1347.

    Article  Google Scholar 

  • Montgomery, M.T., R.K. Smith and S. Nguyen, 2010: Sensitivity of tropical cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc, 136, 1945-1953.

    Article  Google Scholar 

  • Montgomery, M.T. and Roger K. Smith, 2013: Paradigms for tropical cyclone intensification, 2013. Tropical Cyclone Research Report TCRR, 1, 1-30. Meteorological Institute, Ludwig Maximilians University of Munich.

    Google Scholar 

  • Moon, I.-J., T. Hara, I. Ginis, S.E. Belcher and H. Tolman, 2004a: Effect of surface waves on air-sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci., 61, 2321-2333.

    Article  Google Scholar 

  • Moon, I.-J., I. Ginis and T. Hara, 2004b: Effect of surface waves on air-sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci., 61, 2334-2348.

    Article  Google Scholar 

  • Moon, I.-J., I. Ginis and T. Hara, 2008: Impact of the reduced drag coefficient on ocean wave modeling under hurricane conditions. Mon. Wea. Rev., 136, 1217-1223.

    Article  Google Scholar 

  • Moon, I.-J., I. Ginis, T. Hara and B. Thomas, 2007: A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135, 2869-2878.

    Article  Google Scholar 

  • Moss, M.S. and F.J. Merceret, 1976: A note on several low-layer features of Hurricane Eloise (1975). Mon. Wea. Rev., 104, 967-971.

    Article  Google Scholar 

  • Noh, Y., W.G. Cheon, S.Y. Hong and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401-427.

    Article  Google Scholar 

  • Nolan, D.S., J.A. Zhang and D.P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer core boundary layer structure. Mon. Wea. Rev., 137, 3651-3674.

    Article  Google Scholar 

  • Nolan, D.S., J.A. Zhang and D.P. Stern, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 3675-3698.

    Article  Google Scholar 

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3-40.

    Article  Google Scholar 

  • Persing, J. and M.T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349-2371.

    Article  Google Scholar 

  • Powell, M.D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Mon. Wea. Rev., 118, 918-938.

    Article  Google Scholar 

  • Powell, M.D., P.J. Vickery and T. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279-283.

    Article  Google Scholar 

  • Reasor, P.D., M.T. Montgomery, F.D. Marks Jr. and J.F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653-1680.

    Article  Google Scholar 

  • Rogers, R., S. Lorsolo, P. Reasor, J. Ganache and F.D. Marks, 2012: Multiscale analysis of mature tropical cyclone structure from airborne Doppler composites. Monthly Weather Review, 140(1), 77-99.

    Article  Google Scholar 

  • Shea, D.J. and W.M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 1544-1564.

    Article  Google Scholar 

  • Smith, R.K., 1968: The surface boundary layer of a hurricane. Tellus, 20, 473-483.

    Article  Google Scholar 

  • Smith, R.K. and M.T. Montgomery, 2008: Balanced depth-averaged boundary layers used in hurricane models. Quart. J. Roy Met. Soc., 134, 1385-1395.

    Article  Google Scholar 

  • Smith, R.K. and G.L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteror. Soc., 136, 1671-1685.

    Article  Google Scholar 

  • Smith, R.K., M.T. Montgomery and N.V. Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 1321-1335.

    Article  Google Scholar 

  • Smith, R.K., Michael T. Montgomery and Gerald L. Thomsen, 2013: Sensitivity of tropical-cyclone models to the surface drag coefficient in different boundary-layer schemes. Quarterly Journal of the Royal Meteorological Societyn/a-n/a.

    Google Scholar 

  • Stull, R.B., 2000: Meteorology for Scientists and Engineers. Second Edition, Brooks/Cole, Thomson Learning, Pacific Grove.

    Google Scholar 

  • Stull, R.B., 1988: An introduction to boundary layer meteorology. Kluwer, Dordrecht, Holland.

    Book  Google Scholar 

  • Troen, I. and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129-148.

    Article  Google Scholar 

  • Tuleya, R.E. and Y. Kurihara, 1978: A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci., 35, 242-257.

    Article  Google Scholar 

  • Tuleya, R.E., 1994: Tropical storm development and decay. Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291-304.

    Article  Google Scholar 

  • Vogelezang, D.H.P. and A.A.M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245-269.

    Article  Google Scholar 

  • Yablonsky, R.M. and I. Ginis, 2013: Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 997-1021.

    Article  Google Scholar 

  • Zhang, D.-L., Y. Liu and M.K. Yau, 1999: Surface winds at landfall of Hurricane Andrew (1992) - A reply.

    Google Scholar 

  • Zhang, D.-L., Y. Liu and M.K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically-induced vertical motion. Monthly Weather Review, 128, 3772-3788.

    Article  Google Scholar 

  • Zhang, D.-L., Y. Liu and M.K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Monthly Weather Review, 129, 92-107.

    Article  Google Scholar 

  • Zhang, D.-L., Y. Liu and M.K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Monthly Weather Review , 130, 2745-2763.

    Article  Google Scholar 

  • Zhang, J.A., W.M. Drennan, P.G. Black and J.R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 2455-2467.

    Article  Google Scholar 

  • Zhang, J.A., 2010: Estimation of dissipative heating using low-level in situ aircraft observations in the hurricane boundary layer. J. Atmos. Sci., 67, 1853-1862.

    Article  Google Scholar 

  • Zhang, J., 2007: An airborne investigation of the atmospheric boundary layer structure in the hurricane force wind regime. Doctoral Dissertation, University of Miami.

    Google Scholar 

  • Zhang, J.A., P.G. Black, J.R. French and W.M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    Article  Google Scholar 

  • Zhang, J.A., R.F. Rogers, D.S. Nolan and F.D. Marks, 2011a: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 2523-2535.

    Article  Google Scholar 

  • Zhang, J.A., F.D. Marks, M.T. Montgomery and S. Lorsolo, 2011b: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 1447-1462.

    Article  Google Scholar 

  • Zhang, J.A. and M.T. Montgomery, 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 1306-1316.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from NOAA’s Hurricane Forecast Improvement Project that supported this work. The author acknowledges the support provided by Indo-US Science and Technology Forum, NOAA’s Hurricane Forecast Improvement Project and various national and international collaborators who have helped improving the operational HWRF model. Thanks are due to Ms. Lisa Bucci for offering editorial support and to Drs. J-W.Bao, Jun Zhang, Hua Chen, Frank Marks and Mr. Joshua Alland for providing the internal review for this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Capital Publishing Company

About this chapter

Cite this chapter

Gopalakrishnan, S.G., Srinivas, C.V., Bhatia, K.T. (2016). The Hurricane Boundary Layer. In: Mohanty, U.C., Gopalakrishnan, S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht. https://doi.org/10.5822/978-94-024-0896-6_23

Download citation

Publish with us

Policies and ethics