Skip to main content

Tropical Cyclone Research over the North Indian Ocean: Impact of Data and Vortex Initialization in High Resolution Mesoscale Models

  • Chapter
Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction

Abstract

The nomenclature of TCs is different in different parts of the world. In the Atlantic and eastern Pacific, they are known as ‘hurricane’ and in western Pacific as ‘typhoon’. In the North Indian Ocean (NIO) region, they are termed as ‘tropical cyclone’. Though, considered as a relatively rare phenomenon in any basin, annual frequency of occurrence is quite steady with an average variation of ±7 %. Approximately, 80 tropical storm reach cyclonic storm intensity every year that cause an average number of 20,000 deaths and a total economic loss of $6-7 billion (Southern, 1979). Almost all these storms form within 25° latitude on both sides of the equator except in the equatorial region of 5° S to 5° N due to negligible Coriolis force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arakawa, A. and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment. Part I. J. Atmos. Sci., 31, 674-701.

    Article  Google Scholar 

  • Bansal, R.K. and S.R.H. Rizvi, 1993: A New Approach to the Analysis Problem. Proceeding of National Symposium: Advances in Tropical Meteorology, Meteorology and National Development, TROMPET 93, 17-19 March 1993, NCMRWF, New Delhi, (ed.) R. K. Datta. pp. 23-32.

    Google Scholar 

  • Barker, D.M., W. Huang, Y.-R. Guo, A.J. Bourgeois and Q.N. Xiao, 2004: A three-dimensional variational data assimilation system for use with MM5: Implementation and initial results. Mon. Weather Rev., 132, 897-914.

    Article  Google Scholar 

  • Chen, S.H., 2007: The Impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulation. Mon. Wea. Rev., 135, 549-566.

    Article  Google Scholar 

  • Das Gupta, M., 2006: Impact of Certain Meteorological Data on Monsoon Simulation with a Global Analysis-Forecast System. Ph.D. Thesis, Berhampur University.

    Google Scholar 

  • Davis, C.A. et al., 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF model. Mon. Wea. Rev., 136, 1990-2005.

    Article  Google Scholar 

  • De Angelis, D., 1976: World of tropical cyclones - North Indian Ocean. Mar. Weather Log., 20, 191-194.

    Google Scholar 

  • Fels, S.B. and M.D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 1475-1488.

    Article  Google Scholar 

  • Gao, J., M. Xue, A. Shapiro and K.K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Weather Rev., 127, 2128-2142.

    Article  Google Scholar 

  • Gopalakrishnan, S.G., D.P. Bacon, N.N. Ahmad, Z. Boybeyi, T.J. Dunn, M.S. Hall, Y. Jin, P.C.S. Lee, R.V. Madala, R. Ananthakrishna Sarma, M.D. Turner and T. Wait, 2002: An operational multi-scale atmospheric model with grid adaptivity for hurricane forecasting. Mon Wea Rev, 130(7), 1830-1847.

    Article  Google Scholar 

  • Gopalakrishnan, S.G., Q. Liu, T. Marchok, D. Sheinin, N. Surgi, R. Tuleya, R. Yablonsky and X. Zhang, 2010: Hurricane Weather and Research and Forecasting (HWRF) model scientific documentation. NOAA/NCAR/Development Tech Center, 75 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_final_2-2_cm.pdf.]

    Google Scholar 

  • Gopalakrishnan, S., S. Goldenberg, T. Quirino, X. Zhang, F. Marks, K.-S. Yeh, R. Atlas and V. Tallapragada, 2012: Toward improving high resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647-666.

    Article  Google Scholar 

  • Govindankutty, M., A. Chandrasekar, A.K. Bohra, J.P. George and M. Das Gupta, 2008: The impact of assimilation of MODIS observations using WRF-VAR for the prediction of a monsoon depression during September 2006. Open Atmos. Sci. J., 2, 68-78

    Article  Google Scholar 

  • Grell, G.A., 1993: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Wea. Rev., 121, 764-787.

    Article  Google Scholar 

  • Gupta, A., 2006: Current status of tropical cyclone track prediction techniques and forecast errors. Mausam, 57, 151-158.

    Google Scholar 

  • Hong, S.-Y. and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339.

    Article  Google Scholar 

  • Hong, S.-Y. and J.-W. Lee, 2009: Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res., 93, 818-831.

    Article  Google Scholar 

  • Ingleby, N.B., 2001: The statistical structure of forecast errors and its representation in the Met. Office global 3-D variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 127, 209-232.

    Article  Google Scholar 

  • Janjic, Z.I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Mon. Wea. Rev., 112, 1234-1245.

    Article  Google Scholar 

  • Janjic, Z.I., 2001: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437.

    Google Scholar 

  • Janjic, Z.I., 2003a: A Nonhydrostatic Model Based on a New Approach. Meteorology and Atmospheric Physics, 82, 271-285 (Online: http://dx.doi.org/10.1007/s00703-001-0587-6).

    Article  Google Scholar 

  • Janjic, Z.I., 2003b: The NCEP WRF Core and Further Development of Its Physical Package. 5th International SRNWP Workshop on Non-Hydrostatic Modeling, Bad Orb, Germany, 27-29 October.

    Google Scholar 

  • Jianfeng, G.U., Qingnong Xiao, Ying-Hwa Kuo, Dale M. Barker, Xue Jishan and M.A. Xiaoxing, 2005: Assimilation and Simulation of Typhoon Rusa (2002) using the WRF System. Adv. in Atm. Sc., 22(3), 415-427.

    Article  Google Scholar 

  • Lacis, A.A. and J.E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118-133.

    Article  Google Scholar 

  • Lee, C.S., R. Edson and W.M. Gray, 1989: Some large-scale characteristic associated with tropical cyclone development in the North Indian Ocean during FGGE. Mon. Wea. Rev., 117, 407-426.

    Article  Google Scholar 

  • Lee, M.S., Y.H. Kuo, and D.M. Barker, 2006: Incremental Analysis Updates Initialization Technique Applied to 10-km MM5 and MM5 3DVAR. Mon. Wea. Rev., 134, 1389-1404.

    Article  Google Scholar 

  • Mohandas, S. and R.G. Ashrit, 2011: Tropical cyclone prediction using different convective parameterization schemes in a mesoscale model. Research Report, NMRF/RR/01/2011.

    Google Scholar 

  • Mohanty, U.C., A. Routray, Krishna K. Osuri and S. Kiran Prasad, 2012: A Study on Simulation of Heavy Rainfall Events over Indian Region with ARW-3DVAR Modeling System. Pure Appl. Geophys., 169, 381-399.

    Article  Google Scholar 

  • Mohanty, U.C., 1994: Tropical cyclones in the Bay of Bengal and deterministic methods for prediction of their trajectories. Sadhana, 19, 567-582.

    Article  Google Scholar 

  • Mohanty, U.C. and A. Gupta, A., 1997: Deterministic methods for prediction of tropical cyclone tracks. Mausam, 48, 257-272.

    Google Scholar 

  • Mohanty, U.C., Krishna K. Osuri, A. Routray, M. Mohapatra and S. Pattanayak, 2010: Simulation of Bay of Bengal tropical cyclones with WRF Modeling system: Impact of Initial Value and Boundary Conditions. Marine Geodesy, 33, 294-314.

    Article  Google Scholar 

  • Mohanty, U.C., Krishna K. Osuri, S. Pattanayak and P. Sinha, 2012: An observational perspective of tropical cyclone activity over Indian seas in a warming environment. Natural Hazards, 63, 1319-1335, DOI 10.1007/s11069-011-9810-z.

    Article  Google Scholar 

  • Mohanty, U.C., Krishna K. Osuri and S. Pattanayak, 2013: A study on high resolution mesoscale modeling systems for simulation of tropical cyclones over the Bay of Bengal. Mausam, 64, 117-134.

    Google Scholar 

  • Mohapatra, M., B.K. Bandyopadhyay and D.P. Nayak, 2013a: Evaluation of operational tropical cyclone intensity forecasts over north Indian Ocean issued by India Meteorological Department. Nat. Hazards, 68, 433-451.

    Article  Google Scholar 

  • Mohapatra, M., D.P. Nayak, R.P. Sharma and B.K. Bandyopadhyay, 2013b: Evaluation of official tropical cyclone track forecast over north Indian Ocean issued by India Meteorological Department. J. Earth Syst. Sci., 122, 589-601.

    Article  Google Scholar 

  • Niyogi, D., T. Holt, S. Zhong, P.C. Pyle and J. Basara, 2006: Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the southern Great Plains. J. Geophys. Res., 111, D19107, doi:10.1029/2005JD006746.

    Article  Google Scholar 

  • Osuri, Krishna K., U.C. Mohanty, A. Routray and M. Mohapatra, 2012b: Impact of Satellite Derived Wind Data Assimilation on track, intensity and structure of tropical cyclones over North Indian Ocean. International Journal of Remote Sensing, 33, 1627-1652, DOI:10.1080/01431161.2011.596849.

    Article  Google Scholar 

  • Osuri, Krishna K., U.C. Mohanty, A. Routray, Makarand A. Kulkarni and M. Mohapatra, 2012a: Sensitivity of physical parameterization schemes of WRF model for the simulation of Indian seas tropical cyclones. Natural Hazards, 63, 1337-1359, DOI 10.1007/s11069-011-9862-0.

    Article  Google Scholar 

  • Osuri, Krishna K., U.C. Mohanty, A. Routray, M. Mohapatra and Dev Niyogi, 2013: Real-Time Track Prediction of Tropical Cyclones over the North Indian Ocean Using the ARW Model. Journal of Applied Meteorology and Climatology, 52, 2476-2492.

    Article  Google Scholar 

  • Pattanaik, D.R. and Y.V. Rama Rao, 2009: Track prediction of very severe cyclone ‘Nargis’ using high resolution Weather Research Forecasting (WRF) model. J. Earth Syst. Sci., 118, 309-329.

    Article  Google Scholar 

  • Pattanayak, S. and U.C. Mohanty, 2008: A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Current Science, 95, 923-936.

    Google Scholar 

  • Pattanayak, S. and U.C. Mohanty, 2010: Simulation of track and intensity of tropical cyclones with WRF-NMM modeling system. WMO Technical Report, WMO/TD No. 1541.

    Google Scholar 

  • Pattanayak, S., U.C. Mohanty and S.G. Gopalakrishnan, 2012a: Simulation of very severe Cyclone Mala over Bay of Bengal with HWRF modeling system. Nat. Hazards, 63, 1413-1437.

    Article  Google Scholar 

  • Pattanayak, S., U.C. Mohanty and Krishna K. Osuri (2012b): Impact of parameterization of physical processes on simulation of track and intensity of tropical cyclone Nargis (2008) with WRF-NMM model. The Scientific World Journal, DOI: 10.1100/2012/671437.

    Google Scholar 

  • Pu, Z., X. Li, C. Velden, S. Aberson and W.T. Liu, 2008: Impact of aircraft dropsonde and satellite wind data on the numerical simulation of two landfalling tropical storms during TCSP. Wea Forecast, 23, 62-79.

    Article  Google Scholar 

  • Routray, A., U.C. Mohanty, S.R.H. Rizvi, D. Niyogi, Krishna K. Osuri and D. Pradhan, 2010: Impact of Doppler weather radar data on simulation of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 136, 1836-1850.

    Article  Google Scholar 

  • Schwarzkopf, M.D. and S.B. Fels, 1985: Improvements to the algorithm for computing CO2 transmissivities and cooling rates. J. Geophys. Res., 90, 541-550.

    Article  Google Scholar 

  • Schwarzkopf, M.D. and S.B. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computations of infrared cooling rates and fluxes. J. Geophys. Res., 96, 9075-9096.

    Article  Google Scholar 

  • Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, W. Wang and J.G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR Technical Note NCAR/TN-408 + STR. Available from www.wrf-model.org.

    Google Scholar 

  • Southern, R.L., 1979: Global socio-economic impact of tropical cyclones. Aust. Meteor. Mag., 27, 175-195.

    Google Scholar 

  • Velden, C., T. Olander and S. Wanzong, 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Mon. Wea. Rev., 126, 1202-1218.

    Article  Google Scholar 

  • Wu, B., J. Verlinde and J. Sun, 2000: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J. Atm. Sci., 57, 262-283.

    Article  Google Scholar 

  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, D.M. Barker and E. Lim, 2007 : An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteorol. Clim., 46, 14-22.

    Article  Google Scholar 

  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo and D.M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteorol., 44, 768-788.

    Article  Google Scholar 

Download references

Acknowledgement

We owe thanks to Indian National Centre for Ocean Information Services (INCOIS) for the needful financial support to carry out the research on tropical cyclones over NIO and duly acknowledge. Also acknowledge the Indo-US Science and Technology Forum (IUSSTF) support for the conference. The authors also acknowledge to IMD for providing TCs observations. The authors acknowledge NCAR, NCEP and DTC for providing the ARW, NMM and HWRF modelling systems and global analysis and forecast products used in the present study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Capital Publishing Company

About this chapter

Cite this chapter

Mohanty, U.C., Osuri, K.K., Pattanayak, S. (2016). Tropical Cyclone Research over the North Indian Ocean: Impact of Data and Vortex Initialization in High Resolution Mesoscale Models. In: Mohanty, U.C., Gopalakrishnan, S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht. https://doi.org/10.5822/978-94-024-0896-6_18

Download citation

Publish with us

Policies and ethics