Skip to main content

Abstract

We are receiving lot of observations day to day from different platforms such as upper air, surface stations and remote sensing instruments. The difficulty is to use these data, which are sometimes conflicting, to find a best estimate of the state of the earth system which will be used for diverse applications. But we need to ensure that a time sequence of these estimated states is consistent with any known equations that govern the evolution of the system. The method to achieve this goal is known as data assimilation (Mathieu and O’Neill, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since J in Eq. (11) is a quadratic function of the analysis increment (x - x b ), for a given generalized quadratic function F

    $$ F(x)={\scriptscriptstyle \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}{x}^T\kern0.5em Ax+{d}^T\kern0.5em x+c, $$
    (A)

    we have

    $$ \nabla F(x)= Ax+d $$
    (B)

    and

    $$ \nabla \left({d}^Tx\right)=\nabla \left({x}^Td\right)=d. $$
    (C)

References

  • Bishop, C.M. (ed.), (1995): Neural Networks for Pattern Recognition. Oxford Univ. Press.

    Google Scholar 

  • Bocquet, M., 2006: Introduction aux principes et méthodes del’assimilation de données en géophysique. EnSTA ParisTech and Ecole des Ponts Paris Tech lectures notes.

    Google Scholar 

  • Bouttier, F. and P. Courtier, 1999: Data assimilation concepts and methods. Training Course notes of ECMWF.

    Google Scholar 

  • Courtier, P., E. Andersson, W. Heckley, J. Pailleux, D. Vasiljevic, M. Hamrud, A. Hollingsworth, F. Rabier and M. Fisher, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). Part 1: Formulation. Quart. J. Roy. Meteor. Soc., 124, 1783-1807.

    Google Scholar 

  • Errico, R., T. Vukicevic and K. Raeder, 1993: Examination of the accuracy of a tangent linear model. Tellus, 45A, 462-477.

    Article  Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10,143-10,162.

    Article  Google Scholar 

  • Ghil, M., 1989: Meteorological Data Assimilation for Oceanographers. Part I: Description and Theoretical Framework. Dyn. of Atmos. Oceans, 13, 171-218.

    Article  Google Scholar 

  • Ide, K., P. Courtier, M. Ghil and A.C. Lorenc, 1997: Unified notation for data assimilation: Operational sequential and variational. J. Meteor. Soc. Japan, 75, 180-189.

    Google Scholar 

  • Kalman, R.E., 1960: A New Approach to Linear Filtering and Prediction Problems. Transaction of the ASME—Journal of Basic Engineering, 35-45.

    Google Scholar 

  • Lacarra, J.-F. and O. Talagrand, 1988: Short-Range Evolution of Small Perturbations in a Barotropic Model. Tellus, 40A, 81-95.

    Article  Google Scholar 

  • Lorenc, A.C., 1981: A global three-dimensional multivariate statistical interpolation scheme. Mon. Weather Rev., 109, 701-721.

    Article  Google Scholar 

  • Lorenc, A.C., 1986: Analysis methods for numerical weather prediction. Q.J.R. Meteorol. Soc., 112, 1177-1194.

    Article  Google Scholar 

  • Lorenc, A.C., S.P. Ballard, R.S. Bell, N.B. Ingleby, P.L.F. Andrews, D.M. Barker, J.R. Bray, A.M. Clayton, T. Dalby, D. Li, T.J. Payne and F.W. Saunders, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991-3012.

    Article  Google Scholar 

  • Mathieu, P.-P. and A. O’Neill, 2008: Data assimilation: From photon counts to Earth System forecasts. Remote Sens. Environ., 112, 1258-1267.

    Article  Google Scholar 

  • Parrish, D.F. and J.C. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.

    Article  Google Scholar 

  • Saporta, A. (ed.), 2005: Probability, Data Analysis and Statistics. Technip, Paris.

    Google Scholar 

  • Talagrand, O., 1997: Assimilation of observations: An introduction. J. Meteorol. Soc. Jpn., 75, 191-209.

    Google Scholar 

  • Tarantola, A. (ed.), 2005: Inverse Problem Theory and Model Parameter Estimation. SIAM.

    Google Scholar 

  • Welch, G. and G. Bishop, 2004: An Introduction to the Kalman Filter. University of North Carolina (UNC), Chapel Hill, North Carolina. Technical Report (TR 95-041).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Capital Publishing Company

About this chapter

Cite this chapter

Routray, A., Osuri, K.K., Pattanayak, S., Mohanty, U.C. (2016). Introduction to Data Assimilation Techniques and Ensemble Kalman Filter. In: Mohanty, U.C., Gopalakrishnan, S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht. https://doi.org/10.5822/978-94-024-0896-6_11

Download citation

Publish with us

Policies and ethics