Skip to main content

Abstract

Tropical cyclones (TCs) were observed by both operational and research aircraft since the first flight piloted by U.S. Army Air Force Lt. Col. Joseph P. Duckworth on 17 July, 1943 (Sumner, 1943). The U.S. military conducted the first dedicated research flight into a TC (Wexler, 1945; Wood, 1945), and a subsequent flight examined the upper troposphere of a 1947 Atlantic TC (Simpson, 1954). In the early 1950s, somewhat regular TC research was conducted during operational military reconnaissance flights originating in Bermuda and Guam (Simpson, 1952; 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberson, S.D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 1613–1628.

    Article  Google Scholar 

  • Aberson, S.D., M.L. Black, R.A. Black, R.W. Burpee, J.J. Cione, C.W. Landsea and F.D. Marks, 2006: Twenty-five years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87, 1039–1055, doi: http://dx.doi.org/10.1175/BAMS-87-8-1039.

    Article  Google Scholar 

  • Aksoy, A., S. Lorsolo, T. Vukicevic, K.J. Sellwood, S.D. Aberson and F. Zhang, 2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140, doi: http://dx.doi.org/10.1175/MWR-D-11-00212.1

    Google Scholar 

  • Barnes, G.M., E.J. Zipser, D.P. Jorgensen and F.D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125–2137.

    Article  Google Scholar 

  • Barnes, G.M., J.F. Gamache, M.A. LeMone and G.J. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119, 776–794.

    Article  Google Scholar 

  • Barnes, G.M., E.J. Zipser, D. Jorgensen and F.D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125–2137.

    Article  Google Scholar 

  • Barnes, G.M. and M.D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 2348–2368.

    Article  Google Scholar 

  • Black, M.L. and H.E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947–957.

    Article  Google Scholar 

  • Black, P.G., 1983: Ocean temperature changes induced by tropical cyclones. Ph.D. thesis, The Pennsylvania State University.

    Google Scholar 

  • Black, P.G., R.L. Elsberry, L.K. Shay, R.P. Partridge and J.F. Hawkins, 1988: Atmospheric and oceanic mixed layer observations in Hurricane Josephine obtained from air-deployed drifting buoys and research aircraft. J. Atmos. Oceanic Technol., 5, 683–698.

    Article  Google Scholar 

  • Black, P.G. and G.J. Holland, 1995: The Boundary Layer of Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123, 2007–2028.

    Article  Google Scholar 

  • Black, P.G. et al., 2007: Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357–374.

    Article  Google Scholar 

  • Black, R.A. and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802–822.

    Article  Google Scholar 

  • Braun, S.A. et al., 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) Field Experiment. Bull. Amer. Meteor. Soc., 94, 345–363. doi: http://dx.doi.org/10.1175/BAMS-D-11-00232.1

    Article  Google Scholar 

  • Braun, S.A. and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961.

    Article  Google Scholar 

  • Burpee, Robert W. et al., 1994: Real-Time Guidance Provided by NOAA’s Hurricane Research Division to Forecasters during Emily of 1993. Bull. Amer. Meteor. Soc., 75, 1765–1783.

    Article  Google Scholar 

  • Burpee, R.W., J.L. Franklin, S.J. Lord, R.E. Tuleya and S.D. Aberson, 1996: The impact of Omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925–933.

    Article  Google Scholar 

  • Cione, J.J. and E.W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796.

    Article  Google Scholar 

  • Cione, J.J., P.G. Black and S.H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550–1561.

    Article  Google Scholar 

  • D’Asaro, E., P. Black, L. Centurioni, P. Harr, S. Jayne, I.-I. Lin, C. Lee, J. Morzel, R. Mrvaljevic, P.P. Niiler, L. Rainville, T. Sanford and T.Y. Tang, 2011. Typhoon-ocean interaction in the western North Pacific: Part 1. Oceanography, 24, 24–31, http://dx.doi.org/10.5670/oceanog.2011.91.

    Article  Google Scholar 

  • D’Asaro, E.A., 2003: Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20, 896–911.

    Article  Google Scholar 

  • Davis, W.R., 1954: Hurricanes of 1954. Mon. Wea. Rev., 82, 370–373.

    Article  Google Scholar 

  • Dorst, N.M., 2007: The National Hurricane Research Project: 50 years of research, rough rides, and name changes. Bull. Amer. Meteor. Soc., 88, 1566–1588, doi: http://dx.doi.org/10.1175/BAMS-88-10-1566.

    Article  Google Scholar 

  • Franklin, J.L., S.E. Feuer, J. Kaplan and S.D. Aberson, 1996: Tropical cyclone motion and surrounding flow relationships: Searching for beta gyres in omega dropwindsonde data sets. Mon. Wea. Rev., 124, 64–84.

    Article  Google Scholar 

  • Franklin, J.L., M.L. Black and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 32–44.

    Article  Google Scholar 

  • Gall, R., J. Franklin, F.D. Marks, E.N. Rappaport and F. Toepfer, 2012: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329–343. doi: http://dx.doi.org/10.1175/BAMS-D-12-00071.1.

    Article  Google Scholar 

  • Gamache, J.F., R.A. Houze Jr. and F.D. Marks Jr., 1993: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50, 3221–3243.

    Article  Google Scholar 

  • Gentry, R.C., 1981: History of hurricane research in the United States with special emphasis on the National Hurricane Research Laboratory and associated groups. Preprints, 13th Technical Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 6–16.

    Google Scholar 

  • Gopalakrishnan, S., F.D. Marks, J. Zhang, X. Zhang, J.-W. Bao and V. Tallapragada, 2013: A study of the impact of vertical diffusion on the structure and intensity of tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524–541, doi: http://dx.doi.org/10.1175/JAS-D-11-0340.1

    Article  Google Scholar 

  • Govind, P.K., 1975: Dropwindsonde instrumentation for weather reconnaissance aircraft. J. Appl. Meteor., 14, 1512–1520.

    Article  Google Scholar 

  • Griffin, J.S., R.W. Burpee, F.D. Marks and J.L. Franklin, 1992: Real-Time Airborne Analysis of Aircraft Data Supporting Operational Hurricane Forecasting. Wea. Forecasting, 7, 480–490.

    Article  Google Scholar 

  • Hock, T.F. and J.L. Franklin, 1999: The NCAR GPS Dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407–420.

    Article  Google Scholar 

  • Houze, R.A., F.D. Marks Jr. and R.A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49, 943–963.

    Article  Google Scholar 

  • Ishihara, M., Z. Yanagisawa, H. Sakakibara, K. Matsuura and J. Aoyagi, 1986: Structure of typhoon rainband observed by two Doppler radars. J. Met. Soc. Japan, 64, 923–939.

    Google Scholar 

  • Jaimes, B. and L.K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 4188–4207.

    Article  Google Scholar 

  • Jelesnianski, C.P., J. Chen and W.A. Shaffer, 1992: SLOSH: Sea, lake and overland surges from hurricanes. NOAA Tech. Rep. NWS 48, Silver Spring, MD.

    Google Scholar 

  • Jorgensen, D.F., 1984a: Mesoscale and Convective-Scale Characteristics of Mature Hurricanes. Part I: General Observations by Research Aircraft. J. Atmos. Sci., 41, 1268–1286.

    Article  Google Scholar 

  • Jorgensen, D.F., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287–1311.

    Article  Google Scholar 

  • Jorgensen, D.F., P.H. Hildebrand and C.L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Climate Appl. Meteor., 22, 744–757.

    Article  Google Scholar 

  • Kepert, J.D., 2010a: Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteorol. Soc., doi: 10.1002/qj.667.

    Google Scholar 

  • Kepert, J.D., 2010b: Slab- and height-resolving models of the tropical cyclone boundary layer. Part II: Why the simulations differ. Quart. J. Roy. Meteorol. Soc., doi: 10.1002/qj.685.

    Google Scholar 

  • Kossin, J.P. and M.D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 1079–1090.

    Article  Google Scholar 

  • Lorsolo, S., J.A. Zhang, F.D. Marks and J. Gamache, 2010: Estimation and Mapping of Hurricane Turbulent Energy Using Airborne Doppler Measurements. Mon. Wea. Rev., 138, 3656–3670.

    Article  Google Scholar 

  • Malmquist, D.L. and A.F. Michaels, 2000: Severe storms and the insurance industry. Storms, Vol. I, R.A. Pielke Jr. and R.A. Pielke Sr. (Eds), Routledge Press, 54–69.

    Google Scholar 

  • Marks, F.D., 2003: State of the Science: Radar View of Tropical Cyclones. In: Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. R.M Wakimoto and R.C. Srivastava (Eds), Meteorological Monographs, 52, AMS, Boston, MA, 33–74.

    Google Scholar 

  • Marks, F.D. and R.A. Houze, 1984: Airborne Doppler Radar Observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569–582.

    Article  Google Scholar 

  • Marks, F.D. and R.A. Houze, 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 1296–1317.

    Article  Google Scholar 

  • Marks, F.D., R.A. Houze Jr. and J.F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919–942.

    Article  Google Scholar 

  • Moller, J.D. and M.T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 1674–1687.

    Article  Google Scholar 

  • Moller, J.D. and M.T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 3366–3387.

    Article  Google Scholar 

  • Montgomery, M.T. and R. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.

    Article  Google Scholar 

  • Montgomery, M.T. et al., 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Experiment: Scientific Basis, New Analysis Tools, and Some First Results. Bull. Amer. Meteor. Soc., 93, 153–172. doi: http://dx.doi.org/10.1175/BAMS-D-11-00046.1

    Article  Google Scholar 

  • Nolan, D.S., J.A. Zhang and D.P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer core boundary layer structure. Mon. Wea. Rev., 137, 3651–3674.

    Article  Google Scholar 

  • Nolan, D.S., D.P. Stern and J.A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 3675–3698.

    Article  Google Scholar 

  • Nystuen, J.A. and H.D. Selsor, 1997: Weather classification using passive acoustic drifters. J. Atmos. Oceanic Technol., 14, 656–666.

    Article  Google Scholar 

  • Powell, M.D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891–917.

    Article  Google Scholar 

  • Powell, M.D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918–938.

    Article  Google Scholar 

  • Pun, I.F., Y.-T. Chang, I.-I. Lin, T.Y. Tang and R.-C. Lien, 2011: Typhoon-ocean interaction in the western North Pacific: Part 2. Oceanography, 24, 32–41, http://dx.doi.org/10.5670/oceanog.2011.92.

    Article  Google Scholar 

  • Reasor, P.D., M.T. Montgomery, F.D. Marks and J.F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680.

    Article  Google Scholar 

  • Rogers, R. et al., 2013: NOAA’s Hurricane Intensity Forecasting Experiment (IFEX): A Progress Report. Bull. Amer. Meteor. Soc., 94, 859–882. doi: http://dx.doi.org/10.1175/BAMS-D-12-00089.1.

    Article  Google Scholar 

  • Rogers, R., S. Lorsolo, P. Reasor, J. Gamache and F.D. Marks, 2012: Multiscale Analysis of Tropical Cyclone Kinematic Structure from Airborne Doppler Radar Composites. Mon. Wea. Rev., 140, 77–99. doi: http://dx.doi.org/10.1175/MWR-D-10-05075.1.

    Article  Google Scholar 

  • Rogers, R. et al., 2006: The Intensity Forecasting Experiment: A NOAA Multiyear Field Program for Improving Tropical Cyclone Intensity Forecasts. Bull. Amer. Meteor. Soc., 87, 1523–1537. doi: http://dx.doi.org/10.1175/BAMS-87-11-1523

    Article  Google Scholar 

  • Ryan, B.E., G.M. Barnes and E.J. Zipser, 1992: A wide rainband in a developing tropical cyclone. Mon. Wea. Rev., 120, 431–437.

    Article  Google Scholar 

  • Samsury, C.E. and Edward J. Zipser, 1995: Secondary Wind Maxima in Hurricanes: Airflow and Relationship to Rainbands. Mon. Wea. Rev., 123, 3502–3517.

    Article  Google Scholar 

  • Sanford, T.B., R.G. Drever, J.H. Dunlap and E.A. D’Asaro, 1982: Design, operation and performance of an expendable temperature and velocity profiler (XTVP). Rep. APL-UW 8110, Applied Physics Laboratory, University of Washington. (Available from Applied Physics: Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105.)

    Google Scholar 

  • Shapiro, L.J. and J.L. Franklin, 1995: Potential vorticity in Hurricane Gloria. Mon. Wea. Rev., 123, 1465–1475.

    Article  Google Scholar 

  • Shapiro, L.J. and H.E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394.

    Article  Google Scholar 

  • Shay, L.K., R.L. Elsberry and P.G. Black, 1989: Vertical Structure of the Ocean Current Response to a Hurricane. J. Phys. Oceanogr., 19, 649–669.

    Article  Google Scholar 

  • Shay, L.K., P.G. Black, A.J. Mariano, J.D. Hawkins and R.L. Elsberry, 1992: Upper-ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20,227–20,248.

    Article  Google Scholar 

  • Simpson, R.H., 1952: Exploring the eye of Typhoon “Marge,” 1951. Bull. Amer. Meteor. Soc., 33, 286–298.

    Google Scholar 

  • Simpson, R.H., 1954: Hurricanes. Scientific American, 109, 22–37.

    Google Scholar 

  • Simpson, R.H., 1981: Implementation phase of the National Hurricane Research Project 1955–1956. Preprints, 13th Technical Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 1–5.

    Google Scholar 

  • Simpson, R.H. (Ed.), 2003: Hurricanes! Coping with Disaster. Amer. Geophys. Union.

    Google Scholar 

  • Simpson, R.H. and H. Riehl, 1981: The Hurricane and Its Impact. Louisiana State University Press.

    Google Scholar 

  • Smith, R.K. and G.L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary layer representation in a numerical model. Quart. J. Roy Met. Soc., 136, 1671–1685.

    Article  Google Scholar 

  • Sumner, H.C., 1943: North Atlantic hurricanes and tropical disturbances of 1943. Mon. Wea. Rev., 71, 179–183.

    Article  Google Scholar 

  • Tabata, A., H. Sakakibara, M. Ishihara, K. Matsuura and Z. Yanagisawa, 1992: A general view of the structure of Typhoon 8514 observed by dual-Doppler radar: From outer rainbands to eyewall clouds. J. Met. Soc. Japan, 70, 897–917.

    Google Scholar 

  • Uhlhorn, E.W. and P.G. Black, 2003: Verification of Remotely Sensed Sea Surface Winds in Hurricanes. J. Atmos. Oceanic Technol., 20, 99–116.

    Article  Google Scholar 

  • Wexler, H., 1945: The structure of the September, 1944, hurricane when off Cape Henry, Virginia. Bull. Amer. Meteor. Soc., 26, 156–159.

    Google Scholar 

  • Whitehead, J.C., 2003: One million dollars per mile? The opportunity costs of hurricane evacuation. Ocean Coastal Manag., 46, 1069–1083.

    Article  Google Scholar 

  • Willoughby, H.E., 1990a: Temporal changes in the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242–264.

    Article  Google Scholar 

  • Willoughby, H.E., 1990b: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265–274.

    Article  Google Scholar 

  • Willoughby, H.E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 3053–3067.

    Article  Google Scholar 

  • Willoughby, H.E. and M.B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 1298–1305.

    Article  Google Scholar 

  • Willoughby, H.E., J.A. Clos and M.G. Shoreibah, 1982: Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex. J. Atmos. Sci., 39, 395–411.

    Article  Google Scholar 

  • Willoughby, H.E., F.D. Marks and R.J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189–3211.

    Article  Google Scholar 

  • Willoughby, H.E. and M.E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 3033–3048.

    Article  Google Scholar 

  • Wood, F.B., 1945: A flight into the September, 1944, hurricane off Cape Henry, Virginia. Bull. Amer. Meteor. Soc., 26, 153–156.

    Google Scholar 

  • Wroe, D.R. and G.M. Barnes, 2003: Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Mon. Wea. Rev., 131, 1600–1612.

    Article  Google Scholar 

  • Zhang, F., Y. Weng, J. Gamache and F.D. Marks, 2011a: Performance of convection-permitting hurricane initialization and prediction during 2008-2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, doi: http://dx.doi.org/10.1029/2011GL048469.

  • Zhang, J.A., F.D. Marks, M.T. Montgomery and S. Lorsolo, 2011b: An Estimation of Turbulent Characteristics in the Low-Level Region of Intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 1447–1462. doi: http://dx.doi.org/10.1175/2010MWR3435.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Capital Publishing Company

About this chapter

Cite this chapter

Marks, F.D. (2016). Advancing the Understanding and Prediction of Tropical Cyclones Using Aircraft Observations. In: Mohanty, U.C., Gopalakrishnan, S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht. https://doi.org/10.5822/978-94-024-0896-6_1

Download citation

Publish with us

Policies and ethics