Skip to main content

Potential Impacts of Climate Change on Tree Species and Biome Types in the Northern Rocky Mountains

  • Chapter
Climate Change in Wildlands
  • 489 Accesses

Abstract

If one stands on a peak on the eastern side of the Northern Rocky Mountains on a clear day and gazes across the surrounding landscape, striking patterns of vegetation are apparent. From valley bottoms to ridgetops, vegetation grades from grassland and shrublands to open savannas, from dense tall forest to scattered clumps of krumholtz trees in the alpine above the pronounced treeline (fig. 9-1). These recurrent patterns of climatically zoned vegetation suggest that plants are a logical starting point for understanding biodiversity response to climate change. Plants, once established, are sessile and unable to move to more favorable locations and thus are strongly limited by the local climate. The predictable variation in climate with elevation explains this striking pattern of vegetation in the Rockies. To the extent that climate changes in the future, vegetation is expected to change in establishment, growth, and death rates, in canopy structure, and in the distributions of species and thus to show major shifts upward in elevational distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aubry, C., W. Devine, R. Shoal, A. Bower, J. Miller, and N. Maggiulli. 2011. Climate Change and Forest Biodiversity: A Vulnerability Assessment and Action Plan for National Forests in Western Washington. Portland, OR: US Forest Service, PNW Region.

    Google Scholar 

  • Bell, D. M., J. B. Bradford, and W. K. Lauenroth. 2014. Mountain landscapes offer few opportunities for high-elevation tree species migration. Global Change Biology 20:1441–51. doi: 10.1111/gcb.12504.

    Article  Google Scholar 

  • Chang, T., A. J. Hansen, and N. Piekielek. 2014. Patterns and variability of projected bioclimate habitat for Pinus albicaulis in the Greater Yellowstone Ecosystem. PLOS ONE 9 (11): e111669.

    Article  Google Scholar 

  • Colwell, R., S. Avery, J. Berger, G. E. Davis, H. Hamilton, T. Lovejoy, S. Mal-com, A. McMullen, M. Novacek, R. J. Roberts, R. Tapia, and G. Machlis. 2012. Revisiting Leopold: Resource Stewardship in the National Parks. Report. Washington, DC: National Park System Advisory Board Science Committee.

    Google Scholar 

  • Coops, N. C., and R. H. Waring. 2011. Estimating the vulnerability of fifteen tree species under changing climate in northwest North America. Ecological Modelling 222:2119–29.

    Article  Google Scholar 

  • Crookston, N. L., G. E. Rehfeldt, G. E. Dixon, and A. R. Weiskittel. 2010. Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. Forest Ecology and Management 260:1198–1211.

    Article  Google Scholar 

  • Dawson, T. P., S. T. Jackson, J. I. House, I. C. Prentice, and G. M. Mace. 2011. Beyond predictions: Biodiversity conservation in a changing climate. Science 332:53–58.

    Article  CAS  Google Scholar 

  • Gray, L. K., and A. Hamann. 2013. Tracking suitable habitat for tree populations under climate change in western North America. Climate Change 117:289–303.

    Article  Google Scholar 

  • Guisan, A., and W. Thuiller. 2005. Predicting species distribution: Offering more than simple habitat models. Ecology Letters 8:993–1009.

    Article  Google Scholar 

  • GYCC (Greater Yellowstone Coordinating Committee). 2011. Whitebark Pine Strategy for the Greater Yellowstone Area. Report.

    Google Scholar 

  • Hansen, A. J., K. Ireland, K. Legg, R. Keane, E. Barge, M. Jenkis, and M. Pillet. In review. Complex challenges of maintaining whitebark pine in Greater Yellowstone under climate change: A call for innovative research, management, and policy approaches. Forests.

    Google Scholar 

  • Hansen, A. J., and L. B. Phillips. 2015. Which tree species and biome types are most vulnerable to climate change in the US Northern Rocky Mountains? Forest Ecology and Management 338:68–83.

    Article  Google Scholar 

  • Heller, N. E., and E. S. Zavaleta. 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142 (1): 14–32.

    Article  Google Scholar 

  • Hunter, M. L., G. L. Jacobson, and T. Webb. 1988. Paleoecology and the coarse-filter approach to maintaining biological diversity. Conservation Biology 2 (4): 375–85.

    Article  Google Scholar 

  • Huntley, B., P. M. Berry, W. Cramer, and A. P. Mcdonald. 1995. Modelling present and potential future ranges of some European higher plants using climate response surfaces. Journal of Biogeography 22:967–1001.

    Article  Google Scholar 

  • Iverson, L. R., S. N. Matthews, A. M. Prasad, M. P. Peters, and G. Yohe. 2012. Development of risk matrices for evaluating climatic change responses of forested habitats. Climatic Change 114:231–43.

    Article  Google Scholar 

  • McKinney, D. W., J. H. Pedlar, R. B. Rood, and D. Price. 2011. Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biology 17:2720–30.

    Article  Google Scholar 

  • McLane, S. C., and S. N. Aitken. 2012. Whitebark pine (Pinus albicaulis) assisted migration potential: Testing establishment north of the species range. Ecological Applications 22:142–53.

    Article  Google Scholar 

  • Pearson, R. G., and T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography 12:361–71. doi: 10.1046/j.1466-822X.2003.00042.x.

    Article  Google Scholar 

  • Pearson, R. G., J. C. Stanton, K. T. Shoemaker, M. E. Aiello-Lammens, P. J. Ersts, N. Horning, D. A. Fordham, C. J. Raxworthy, H. Y. Ryu, J. McNees, et al. 2014. Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change 4:217–21.

    Article  Google Scholar 

  • Piekielek, N., A. J. Hansen, and T. Chang. 2015. Using custom scientific workflow software and GIS to inform protected area climate adaptation planning across Greater Yellowstone. Ecological Informatics 30:40–48.

    Article  Google Scholar 

  • Rehfeldt, G. E., N. L. Crookston, C. Saenz-Romero, and E. M. Campbell. 2012. North American vegetation model for land-use planning in a changing climate: A solution to large classification problems. Ecological Applications 22:119–41.

    Article  Google Scholar 

  • Serra-Diaz, J. M., J. J. Franklin, M. Ninyerola, F. W. Davis, A. D. Syphard, H. R. Regan, and M. Ikegami. 2014. Bioclimatic velocity: The pace of species exposure to climate change. Diversity and Distributions 20 (2): 169–80.

    Article  Google Scholar 

  • Stein, B. A., P. Glick, N. Edelson, and A. Staudt, eds. 2014. Climate-Smart Conservation: Putting Adaptation Principles into Practice. Washington, DC: National Wildlife Federation.

    Google Scholar 

Download references

Acknowledgments

Funding was provided by the NASA Applied Sciences Program (10-BIOCLIM10-0034) and the North Central Climate Sciences Center. We thank the authors of each of the studies included in this synthesis for providing original data. William B. Monahan provided extensive review and suggestions on drafts of the manuscript.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Island Press

About this chapter

Cite this chapter

Hansen, A.J., Phillips, L.B. (2016). Potential Impacts of Climate Change on Tree Species and Biome Types in the Northern Rocky Mountains. In: Hansen, A.J., Monahan, W.B., Olliff, S.T., Theobald, D.M. (eds) Climate Change in Wildlands. Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-713-1_9

Download citation

Publish with us

Policies and ethics