Potential Impacts of Climate Change on Vegetation for National Parks in the Eastern United States

  • Patrick Jantz
  • William B. Monahan
  • Andrew J. Hansen
  • Brendan M. Rogers
  • Scott Zolkos
  • Tina Cormier
  • Scott J. Goetz


Forests in the eastern United States have a long history of change related to climate and land use. Eighteen thousand years ago, temperatures were considerably lower and glaciers covered much of the area where deciduous forests currently grow. As glaciers retreated and temperatures rose, tree species advanced from southern areas (Delcourt and Delcourt 1988) and may also have dispersed from low-density populations near the edge of the Laurentide ice sheet (McLachlan, Clark, and Manos 2005). A variety of other processes have also influenced the distribution of tree species. Derechos, tornadoes, and fires cause frequent, small- to intermediate-scale disturbances that are important influences on canopy structure and species composition, while larger disturbances, such as hurricanes, cause less frequent but more extensive changes (Dale et al. 2001).


Forest Inventory Species Distribution Model Northern Hardwood Yellow Birch Great Smoky Mountain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E. H. (Ted) Hogg, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660–84.CrossRefGoogle Scholar
  2. Beier, C. M., S. A. Signell, A. Luttman, and A. T. DeGaetano. 2012. High-resolution climate change mapping with gridded historical climate products. Landscape Ecology 27:327–42.CrossRefGoogle Scholar
  3. Bishop, D. A., and C. M. Beier. 2013. Assessing uncertainty in high-resolution spatial climate data across the US Northeast. PLOS ONE 8.Google Scholar
  4. Bürgi, M., E. Russell, and G. Motzkin. 2000. Effects of postsettlement human activities on forest composition in the north-eastern United States: A comparative approach. Journal of Biogeography 27:1123–38.CrossRefGoogle Scholar
  5. Busing, R. T. 2005. Tree mortality, canopy turnover, and woody detritus in old cove forests of the southern Appalachians. Ecology 86:73–84.CrossRefGoogle Scholar
  6. Butler, P. R., L. Iverson, F. R. Thompson III, L. Brandt, S. Handler, M. Janowiak, P. D. Shannon, C. Swanston, K. Karriker, J. Bartig, et al. 2015. Central Appalachians Forest Ecosystem Vulnerability Assessment and Synthesis: A Report from the Central Appalachians Climate Change Response Framework Project. Gen. Tech. Rep. NRS-146. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station.Google Scholar
  7. Corripio, J. G. 2003. Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain. International Journal of Geographical Information Science 17:1–23.CrossRefGoogle Scholar
  8. Cronon, W. 1983. Changes in the Land: Indians, Colonists, and the Ecology of New England. New York: Hill and Wang.Google Scholar
  9. Dale, V. H., L. A. Joyce, S. Mcnulty, R. P. Neilson, M. P. Ayres, M. D. Flannigan, P. J. Hanson, L. C. Irland, A. E. Lugo, C. J. Peterson, et al. 2001. Climate change and forest disturbances. BioScience 51:723–34.CrossRefGoogle Scholar
  10. Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris. 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28:2031–64.CrossRefGoogle Scholar
  11. Delcourt, H. R., and P. A. Delcourt. 1988. Quaternary landscape ecology: Relevant scales in space and time. Landscape Ecology 2:23–44.CrossRefGoogle Scholar
  12. Eschtruth, A. K., R. A. Evans, and J. J. Battles. 2013. Patterns and predictors of survival in Tsuga canadensis populations infested by the exotic pest Adelges tsugae: 20 years of monitoring. Forest Ecology and Management 305:195–203.CrossRefGoogle Scholar
  13. Fisichelli, N. A., S. R. Abella, M. Peters, and F. J. Krist. 2014. Climate, trees, pests, and weeds: Change, uncertainty, and biotic stressors in eastern U.S. national park forests. Forest Ecology and Management 327:31–39.CrossRefGoogle Scholar
  14. Franklin, J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge: Cambridge University Press.Google Scholar
  15. Franklin, J., F. W. Davis, M. Ikegami, A. D. Syphard, L. E. Flint, A. L. Flint, and L. Hannah. 2013. Modeling plant species distributions under future climates: How fine scale do climate projections need to be? Global Change Biology 19:473–83.CrossRefGoogle Scholar
  16. Fridley, J. D. 2009. Downscaling climate over complex terrain: High finescale (<1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). Journal of Applied Meteorology and Climatology 48:1033–49.CrossRefGoogle Scholar
  17. Gao, Y., J. S. Fu, J. B. Drake, Y. Liu, and J.-F. Lamarque. 2012. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environmental Research Letters 7: 044025.CrossRefGoogle Scholar
  18. Gavier-Pizarro, G. I., V. C. Radeloff, S. I. Stewart, C. D. Huebner, and N. S. Keuler. 2010. Housing is positively associated with invasive exotic plant species richness in New England, USA. Ecological Applications 20:1913–25.CrossRefGoogle Scholar
  19. Gibson, J., G. Moisen, T. Frescino, and T. C. Edwards. 2013. Using publicly available forest inventory data in climate-based models of tree species distribution: Examining effects of true versus altered location coordinates. Ecosystems 17: 43–53.CrossRefGoogle Scholar
  20. Goetz, S. J., P. Jantz, and C. A. Jantz. 2009. Connectivity of core habitat in the northeastern United States: Parks and protected areas in a landscape context. Remote Sensing of Environment 113:1421–29.CrossRefGoogle Scholar
  21. Gonzalez, P., R. P. Neilson, J. M. Lenihan, and R. J. Drapek. 2010. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography 19:755–68.CrossRefGoogle Scholar
  22. Haas, J., and J. McAndrews. 2000. The summer drought related hemlock (Tsuga canadensis) decline in eastern North America 5700 to 5100 years ago. In Proceedings: Symposium on Sustainable Management of Hemlock Ecosystems in Eastern North America, 81–88.Google Scholar
  23. Hanberry, B. B., and M. H. Hansen. 2015. Latitudinal range shifts of tree species in the United States across multi-decadal time scales. Basic and Applied Ecology 16:231–38.CrossRefGoogle Scholar
  24. Hansen, A. J., C. R. Davis, N. Piekielek, J. Gross, D. M. Theobald, S. Goetz, F. Melton, and R. DeFries. 2011. Delineating the ecosystems containing protected areas for monitoring and management. BioScience 61:363–73.CrossRefGoogle Scholar
  25. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–78.CrossRefGoogle Scholar
  26. Houghton, R., and J. Hackler. 2001. Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry. Global Ecology and Biogeography 9:125–44.CrossRefGoogle Scholar
  27. Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22:415–27.CrossRefGoogle Scholar
  28. Iverson, L. R., A. M. Prasad, S. N. Matthews, and M. Peters. 2008. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management 254:390–406.CrossRefGoogle Scholar
  29. Jackson, S. T., J. L. Betancourt, R. K. Booth, and S. T. Gray. 2009. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions. Proceedings of the National Academy of Sciences of the United States of America 106 (Supp): 19685–92.CrossRefGoogle Scholar
  30. Jantz, P., and S. Goetz. 2008. Using widely available geospatial data sets to assess the influence of roads and buffers on habitat core areas and connectivity. Natural Areas Journal 28.Google Scholar
  31. Li, W., L. Li, R. Fu, Y. Deng, and H. Wang. 2011. Changes to the North Atlantic Subtropical High and its role in the intensification of summer rainfall vari- ability in the southeastern United States. Journal of Climate 24:1499–1506.CrossRefGoogle Scholar
  32. Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R News: The Newsletter of the R Project 2:18–22.Google Scholar
  33. McKenney, D. W., J. H. Pedlar, R. B. Rood, and D. Price. 2011. Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biology 17:2720–30.CrossRefGoogle Scholar
  34. McLachlan, J., J. Clark, and P. Manos. 2005. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–98.CrossRefGoogle Scholar
  35. Miller, D. A., and R. A. White. 1998. A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions 2:1–26.CrossRefGoogle Scholar
  36. Nowacki, G. J., and M. D. Abrams. 2008. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58:123.CrossRefGoogle Scholar
  37. Pearson, R. G., and T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography 12:361–71.CrossRefGoogle Scholar
  38. Pederson, N., A. W. D’Amato, J. M. Dyer, D. R. Foster, D. Goldblum, J. L. Hart, A. E. Hessl, L. R. Iverson, S. T. Jackson, D. Martin-Benito, et al. 2014. Climate remains an important driver of post-European vegetation change in the eastern United States. Global Change Biology, 1–6. doi: 10.1111/gcb.12663.Google Scholar
  39. Pierce, K. B., T. Lookingbill, and D. Urban. 2005. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology 20:137–47.CrossRefGoogle Scholar
  40. Potter, K. M., and W. W. Hargrove. 2013. Quantitative metrics for assessing predicted climate change pressure on North American tree species. Mathematical and Computational Forestry and Natural-Resource Sciences 5:151–69.Google Scholar
  41. Prasad, A. M., L. R. Iverson, and A. Liaw. 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9:181–99.CrossRefGoogle Scholar
  42. Rehfeldt, G. E., N. L. Crookston, C. Saenz-Romero, and E. M. Cambell. 2012. North American vegetation model for land-use planning in a changing climate: A solution to large classification problems. Ecological Applications 22:119–41.CrossRefGoogle Scholar
  43. Riitters, K. H., J. W. Coulston, and J. D. Wickham. 2012. Fragmentation of forest communities in the eastern United States. Forest Ecology and Management 263:85–93.CrossRefGoogle Scholar
  44. Ruefenacht, B., M. V. Finco, M. D. Nelson, R. Czaplewski, E. H. Helmer, J. A. Blackard, G. R. Holden, A. J. Lister, D. Salajanu, D. Weyermann, et al. 2008. Conterminous US and Alaska forest type mapping using forest inventory and analysis data. Photogrammetric Engineering and Remote Sensing 74:1379–88.CrossRefGoogle Scholar
  45. Runkle, J. R. 2000. Canopy tree turnover in old-growth mesic forests of eastern North America. Ecology 81:554–67.CrossRefGoogle Scholar
  46. Sork, V. L., F. W. Davis, R. Westfall, A. Flint, M. Ikegami, H. Wang, and D. Grivet. 2010. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata) in the face of climate change. Molecular Ecology 19:3806–23.CrossRefGoogle Scholar
  47. Stein, B. A., and P. Glick. 2011. Introduction to Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment, edited by P. Glick, B. A. Stein, and N. Edelson, 6–18. Washington, DC: National Wildlife Federation.Google Scholar
  48. Theobald, D. M., D. Harrison-Atlas, W. B. Monahan, and C. M. Albano. 2015. Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PLOS ONE 10 (12): e0143619.CrossRefGoogle Scholar
  49. Thompson, J. R., D. N. Carpenter, C. V. Cogbill, and D. R. Foster. 2013. Four centuries of change in northeastern United States forests. PLOS ONE 8: e72540.CrossRefGoogle Scholar
  50. Thrasher, B., J. Xiong, W. Wang, F. Melton, A. Michaelis, and R. Nemani. 2013. Downscaled climate projections suitable for resource management. Eos, Transactions American Geophysical Union 94:321–23.CrossRefGoogle Scholar
  51. US Environmental Protection Agency (EPA). 2009. Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. EPA/600/R-08/076 F. Washington, DC.Google Scholar
  52. US Geological Survey, GAP Analysis Program (GAP). 2012. Protected Areas Database of the United States (PADUS), version 1.3.Google Scholar
  53. Zolkos, S. G., P. Jantz, T. Cormier, L. R. Iverson, D. W. McKenney, and S. J. Goetz. 2015. Projected tree species redistribution under climate change: Implications for ecosystem vulnerability across protected areas in the eastern United States. Ecosystems 18 (2): 202–20.CrossRefGoogle Scholar

Copyright information

© Island Press 2016

Authors and Affiliations

  • Patrick Jantz
  • William B. Monahan
  • Andrew J. Hansen
  • Brendan M. Rogers
  • Scott Zolkos
  • Tina Cormier
  • Scott J. Goetz

There are no affiliations available

Personalised recommendations