Advertisement

Vulnerability of Tree Species to Climate Change in the Appalachian Landscape Conservation Cooperative

  • Brendan M. Rogers
  • Patrick Jantz
  • Scott J. Goetz
  • David M. Theobald
Chapter
  • 387 Downloads

Abstract

Forests of the Appalachian Landscape Conservation Cooperative provide critical ecological and management functions. The moist climate of the eastern United States fosters productive stands that store relatively high amounts of carbon; for example, the Appalachian Landscape Conservation Cooperative (Appalachian LCC) accounts for only 7.6 percent of the contiguous United States but contains 18.8 percent of its aboveground forest biomass (derived from Kellndorfer et al. 2012). The Appalachian Mountains create substantial topographic and microclimatic diversity, and forests in the southern Appalachian LCC have some of the highest levels of endemic mammal, bird, amphibian, reptile, freshwater fish, and tree species biodiversity in the conterminous United States (Jenkins et al. 2015). Forest types vary from commercial pine plantations in the south to temperate hardwoods in the central Appalachians to high-elevation spruce-fir forests in the north.

Keywords

Adaptive Capacity Sugar Maple Propagule Pressure Forest Fragmentation Representative Concentration Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Beecher, S. 2013. Adapting to a Changing Climate: Risks and Opportunities for the Upper Delaware River Region, edited by G. Griffith, T. Thaler, T. Crossett, and R. Rasker. Sagle, ID: Model Forest Policy Program in association with Common Waters Partnership, Pinchot Institute for Conservation and the Cumberland River Compact and Headwaters Economics.Google Scholar
  2. Brown, D. G., K. M. Johnson, T. R. Loveland, and D. M. Theobald. 2005. Rural land-use trends in the conterminous United States, 1950–2000. Ecological Applications 15:1851–63.CrossRefGoogle Scholar
  3. Butler, P. R., L. Iverson, F. R. Thompson, et al. 2015. Central Appalachians Forest Ecosystem Vulnerability Assessment and Synthesis. A Report from the Central Appalachians Climate Change Response Framework Project. Newton Square, PA: US Forest Service, Northern Research Station.Google Scholar
  4. Carroll, M., J. Townshend, M. Hansen, C. DiMiceli, R. Sohlberg, and K. Wurster. 2011. MODIS vegetative cover conversion and vegetation continuous fields. In Land Remote Sensing and Global Environmental Change, edited by B. Ramachandran, C. O. Justice, and M. J. Abrams, 725–45. New York: Springer.Google Scholar
  5. Clark, J. S. 1998. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. American Naturalist 152:204–24.CrossRefGoogle Scholar
  6. Crossman, N. D., B. A. Bryan, and D. M. Summers. 2012. Identifying priority areas for reducing species vulnerability to climate change. Diversity and Distributions 18:60–72.CrossRefGoogle Scholar
  7. Dunscomb, J. K., J. S. Evans, J. M. Strager, M. P. Strager, and J. M. Kiesecker. 2014. Assessing Future Energy Development across the Appalachian Landscape Conservation Cooperative. Charlottesville, VA: The Nature Conservancy.Google Scholar
  8. Eschtruth, A. K., and J. J. Battles. 2008. Deer herbivory alters forest response to canopy decline caused by an exotic insect pest. Ecological Applications 18:360–76.CrossRefGoogle Scholar
  9. Evans, R. 2010. Hemlock woolly adelgid and hemlock ecosystems at Delaware Water Gap National Recreation Area. Proceedings of the Fifth Symposium on Hemlock Woolly Adelgid in the Eastern US. Asheville, NC.Google Scholar
  10. Glick, P., B. A. Stein, and N. A. Edelson, eds. 2011. Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment. Washington, DC: National Wildlife Federation.Google Scholar
  11. Higgins, S. I., J. S. Clark, R. Nathan, T. Hovestadt, F. Schurr, J. M. V. Fragoso, M. R. Aguiar, E. Ribbens, and S. Lavorel. 2003. Forecasting plant migration rates: Managing uncertainty for risk assessment. Journal of Ecology 91:341–47.CrossRefGoogle Scholar
  12. Iverson, L. R., M. W. Schwartz, and A. M. Prasad. 2004. How fast and far might tree species migrate in the eastern United States due to climate change? Global Ecology and Biogeography 13:209–19.CrossRefGoogle Scholar
  13. Jantz, P., S. Goetz, and C. Jantz. 2005. Urbanization and the loss of resource lands in the Chesapeake Bay watershed. Environmental Management 36:808–25.CrossRefGoogle Scholar
  14. Jenkins, C. N., K. S. Van Houtan, S. L. Pimm, and J. O. Sexton. 2015. US protected lands mismatch biodiversity priorities. Proceedings of the National Academy of Sciences of the United States of America 112:5081–86.CrossRefGoogle Scholar
  15. Jump, A. S., and J. Penuelas. 2005. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letters 8:1010–20.CrossRefGoogle Scholar
  16. Kellndorfer, J., W. Walker, E. LaPoint, J. Bishop, T. Cormier, G. Fiske, M. Hoppus, K. Kirsch, and J. Westfall. 2012. NACP Aboveground Biomass and Carbon Baseline Data (NBCD 2000), USA, 2000. Oak Ridge, TN: ORNL DAAC.Google Scholar
  17. Kelly, A. E., and M. L. Goulden. 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the United States of America 105:11823–26.CrossRefGoogle Scholar
  18. Krist, F. J., F. J. Sapio, and B. Tkacz. 2010. A multicriteria framework for producing local, regional, and national insect and disease risk maps. In Advances in Threat Assessment and Their Application to Forest and Rangeland Management, edited by J. M. Pye, H. Rauscher, M. Sands, et al., 621–36. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations.Google Scholar
  19. Matthews, S. N., L. R. Iverson, A. M. Prasad, M. P. Peters, and P. G. Rodewald. 2011. Modifying climate change habitat models using tree species-specific assessments of model uncertainty and life history-factors. Forest Ecology and Management 262:1460–72.CrossRefGoogle Scholar
  20. Mazziotta, A., M. Trivino, O.-P. Tikkanen, J. Kouki, H. Strandman, and M. Monkkonen. 2015. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest. Global Change Biology 21:637–51.CrossRefGoogle Scholar
  21. Melillo, J. M., R. V. Callaghan, F. I. Woodward, E. Salati, and S. K. Sinha. 1990. Effects on ecosystems. In Climate Change: The IPCC Scientific Assessment, edited by J. T. Houghton, F. J. Jenkins, and J. J. Ephraums, 131–72. Cambridge: Cambridge University Press.Google Scholar
  22. Nathan, R., N. Horvitz, Y. He, A. Kuparinen, F. M. Schurr, and G. G. Katul. 2011. Spread of North American wind-dispersed trees in future environments. Ecology Letters 14:211–19.CrossRefGoogle Scholar
  23. National Park Service. 1987. General Management Plan for Delaware Water Gap National Recreation Area. Report. US Department of the Interior, National Park Service.Google Scholar
  24. Nowacki, G. J., and M. D. Abrams. 2008. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58:123–38.CrossRefGoogle Scholar
  25. Prasad, A. M., J. D. Gardiner, L. R. Iverson, S. N. Matthews, and M. Peters. 2013. Exploring tree species colonization potentials using a spatially explicit simulation model: Implications for four oaks under climate change. Global Change Biology 19:2196–2208.CrossRefGoogle Scholar
  26. Schwartz, M. W., J. J. Hellmann, J. M. McLachlan, D. F. Sax, J. O. Borevitz, J. Brennan, A. E. Camacho, G. Ceballos, J. R. Clark, H. Doremus, et al. 2012. Managed relocation: Integrating the scientific, regulatory, and ethical challenges. BioScience 62:732–43.CrossRefGoogle Scholar
  27. Theobald, D. M. 2010. Estimating natural landscape changes from 1992 to 2030 in the conterminous US. Landscape Ecology 25:999–1011.CrossRefGoogle Scholar
  28. Theobald, D. M. 2013. A general model to quantify ecological integrity for landscape assessments and US application. Landscape Ecology 28:1859–74.CrossRefGoogle Scholar
  29. Tulloch, V. J. D., A. I. T. Tulloch, P. Visconti, B. S. Halpern, J. E. M. Watson, M. C. Evans, N. A. Auerbach, M. Barnes, M. Beger, I. Chades, et al. 2015. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Frontiers in Ecology and the Environment 13:91–99.CrossRefGoogle Scholar
  30. Wilson, B. T., A. J. Lister, and R. I. Riemann. 2012. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. Forest Ecology and Management 271:182–98.CrossRefGoogle Scholar
  31. Woodall, C. W., C. M. Oswalt, J. A. Westfall, C. H. Perry, M. D. Nelson, and A. O. Finley. 2009. An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management 257:1434–44.CrossRefGoogle Scholar
  32. Zhu, K., C. W. Woodall, and J. S. Clark. 2012. Failure to migrate: Lack of tree range expansion in response to climate change. Global Change Biology 18:1042–52.CrossRefGoogle Scholar

Copyright information

© Island Press 2016

Authors and Affiliations

  • Brendan M. Rogers
  • Patrick Jantz
  • Scott J. Goetz
  • David M. Theobald

There are no affiliations available

Personalised recommendations