Skip to main content

Optimal Locations for Plant Reintroductions in a Changing World

  • Chapter
Plant Reintroduction in a Changing Climate

Abstract

Of all conservation strategies currently practiced throughout the world, reintroductions require the most sophisticated understanding of species biology and ecology (Falk et al. 1996). Whether augmenting existing populations, reintroducing within a species’ known range, or introducing to a location outside the known range, finding optimal sites for long-term survival, growth, reproduction, and establishment of new populations is often “not as self-evident as it might otherwise seem” (Fiedler and Laven 1996, p. 157). Identifying appropriate habitat is essential to establish sustainable populations in existing or new locations, and yet for many species of conservation concern habitat needs are unknown. This uncertainty takes on even more importance in the context of contemporary and projected near-term changes in landscape and regional climate (Giorgi and Francisco 2000; Millar et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Falk, D. A., C. I. Millar, and M. Olwell. 1996. Restoring Diversity: Strategies for Reintroduction of Endangered Plants. Washington, DC: Island Press.

    Google Scholar 

  • Fiedler, P. L., and R. D. Laven. 1996. Selecting reintroduction sites. In Restoring Diversity: Strategies for Reintroduction of Endangered Plants, edited by D. A. Falk, C. I. Millar, and M. Olwell, 157–170. Washington, DC: Island Press.

    Google Scholar 

  • Giorgi, F., and R. Francisco. 2000. Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dynamics 16:69–182.

    Article  Google Scholar 

  • Millar, C. I., N. L. Stephenson, and S. L. Stephens. 2007. Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications 17:2145–51.

    Article  Google Scholar 

  • Lambers, H., F. S. Chapin III, and T. L. Pons. 1998. Plant Physiological Ecology. New York: Springer.

    Google Scholar 

  • Antonelli, A., J. A. A. Nylander, C. Persson, and I. Sanmartin. 2009. Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the United States of America 106:9749–54.

    Article  CAS  Google Scholar 

  • MacArthur, R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Woodward, F. I. 1987. Climate and Plant Distribution. Cambridge Studies in Ecology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Ohmann, J. L., and T. A. Spies. 1998. Regional gradient analysis and spatial patterns of woody plant communities of Oregon forests. Ecological Monographs 68(2):151–82.

    Article  Google Scholar 

  • Huston, M. A. 1999. Local processes and regional patterns: Appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401.

    Article  Google Scholar 

  • Cornwell, W. K., and P. J. Grubb. 2003. Regional and local patterns in plant species richness with respect to resource availability. Oikos 100:417–28.

    Article  Google Scholar 

  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637–69.

    Article  Google Scholar 

  • Colwell, R. K., and T. F. Rangel. 2009. Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Science 106(Suppl 2):19651–58.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium Quantitative Biology 22:415–27.

    Article  Google Scholar 

  • Jackson, S. T., and J. T. Overpeck. 2000. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26:194–220.

    Article  Google Scholar 

  • Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3:349–61.

    Article  Google Scholar 

  • Case, T. J., and M. E. Gilpin. 1974. Interference competition and niche theory. Proceedings of the National Academy of Sciences (USA) 71:3073–77.

    Article  CAS  Google Scholar 

  • Louda, S. M. 1982. Distribution ecology: Variation in plant recruitment over a gradient in relation to insect seed predation. Ecological Monographs 52:25–41.

    Article  Google Scholar 

  • Dangremond, E. M., E. A. Pardini, and T. M. Knight. 2010. Apparent competition with an invasive plant hastens the extinction of an endangered lupine. Ecology 91:2261–71.

    Article  Google Scholar 

  • Brown, J. H., and A. Kodric-Brown. 1977. Turnover rates in insular biogeography: Effects of immigration on extinction. Ecology 58:445–49.

    Article  Google Scholar 

  • Hanski, I. 1999. Metapopulation Ecology. New York: Oxford University Press.

    Google Scholar 

  • Davis, M. B., and R. G. Shaw. 2001. Range shifts and adaptive responses to Quaternary climate change. Science 292:673–79.

    Article  CAS  Google Scholar 

  • Morin, X., and M. J. Lechowicz. 2008. Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biology Letters 4:573–76.

    Article  Google Scholar 

  • Silvertown, J., M. Dodd, D. Gowing, C. Lawson, and K. McConway. 2006. Phylogeny and the hierarchical organization of plant diversity. Ecology 87:S39-49.

    Article  Google Scholar 

  • Whittaker, R. H. 1975. The design and stability of plant communities. In Unifying Concepts in Ecology, edited by W. H. van Dobben and R. H. Lowe-McConnell, 169–74. The Hague, The Netherlands: Junk.

    Chapter  Google Scholar 

  • Morin, X., C. Augspurger, and I. Chuine. 2007. Process-based modeling for tree species’ distributions. What limits temperate tree species’ range boundaries? Ecology 88:2280–91.

    Article  Google Scholar 

  • Baskin, C. C., and J. M. Baskin. 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, CA: Academic Press.

    Google Scholar 

  • Goodman, J. L., S. J. Wright, and J. Maschinski. 2007. Assessing Impacts on Populations and Taking Conservation Steps for the Endangered Key Tree Cactus (Pilosocereus robinii): Sept 2007. Vero Beach: US Fish and Wildlife Service, South Florida Ecological Services Office.

    Google Scholar 

  • Beckage, B., W. J. Patt, M. G. Slocum, and B. Panko. 2003. Influence of the El Nino southern oscillation on fire regimes in the Florida Everglades. Ecology 84:3124–30.

    Article  Google Scholar 

  • Li, Z., and M. Kafatos. 2000. Interannual variability of vegetation in the United States and its relation to El Niño/Southern Oscillation. Remote Sensing of Environment 71:239–47.

    Article  Google Scholar 

  • Hobbs, R. J., and D. A. Norton. 1996. Towards a conceptual framework for restoration ecology. Restoration Ecology 4:93–110.

    Article  Google Scholar 

  • Suding, K. N., and K. L. Gross. 2006. The dynamic nature of ecological systems: Multiple states and restoration trajectories. In Foundations of Restoration Ecology, edited by D. A. Falk, M. A. Palmer, and J. B. Zedler, 190–209. Washington, DC: Island Press.

    Google Scholar 

  • Temperton, V. M., R. J. Hobbs, T. Nuttle, and S. Halle, eds. 2004. Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice. Washington, DC: Island Press.

    Google Scholar 

  • White, P. S., and A. Jentsch. 2004. Disturbance, succession and community assembly in terrestrial plant communities. In Assembly Rules and Restoration Ecology, edited by V. M. Temperton, R. J. Hobbs, T. Nuttle, and S. Halle, 342–66. Washington, DC: Island Press.

    Google Scholar 

  • Holling, C. S. 1996. Surprise for science, resilience for ecosystems, and incentives for people. Ecological Applications 6:733–35.

    Article  Google Scholar 

  • Bond, W. J., and J. E. Keeley. 2005. Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20:387–94.

    Article  Google Scholar 

  • Keddy, P. 2001. Competition. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • Maron, J. L., and E. Crone. 2006. Herbivory: Effects on plant abundance, distribution and population growth. Proceedings of the Royal Society B 273:2575–84.

    Article  Google Scholar 

  • Grubb, P. J. 1977. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biological Reviews 52:107–45.

    Article  Google Scholar 

  • Veblen, T. T. 1992. Regeneration dynamics. In Plant Succession: Theory and Prediction, edited by D. C. Glenn-Lewin, R. K. Peet, and T. T. Veblen, 152–87. London: Chapman & Hall.

    Google Scholar 

  • Wendelberger, K. S., and J. Maschinski. 2009. Linking GIS, observational and experimental studies to determine optimal seedling microsites of an endangered plant in a subtropical urban fire-adapted ecosystem. Restoration Ecology 17:845–53.

    Article  Google Scholar 

  • Tilman, D. 2004. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Science 101:10854–61.

    Article  CAS  Google Scholar 

  • Turner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91(10):2833–49.

    Article  Google Scholar 

  • McKenzie, D., C. Miller, and D. A. Falk. 2010. The Landscape Ecology of Fire. Ecological Studies Series. New York: Springer.

    Google Scholar 

  • Soberon, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10:1115–23.

    Article  Google Scholar 

  • Grinnell, J. 1917. The niche-relationships of the California thrasher. Auk 34:427–33.

    Google Scholar 

  • Elton, C. 1927. Animal Ecology. London: Sedgwick and Jackson.

    Google Scholar 

  • Pulliam, H. R. 1988. Sources, sinks and population regulation. American Naturalist 132:652–61.

    Article  Google Scholar 

  • Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Pickett, S. T. A. 1980. Non-equilibrium co-existence of plants. Bulletin Torrey Botanic Club 107:238–48.

    Article  Google Scholar 

  • Russell, S. K., and E. W. Schupp. 1998. Effects of microhabitat patchiness on patterns of seed dispersal and seed predation of Cercocarpus ledifolius (Rosaceae). Oikos 81:434–43.

    Article  Google Scholar 

  • Gomez-Aparicio, L., R. Zamora, J. M. Gomez, J. A. Hodar, J. Castro, and E. Baraza. 2004. Applying plant facilitation to forest restoration: A meta-analysis of the use of shrubs as nurse plants. Ecological Applications 14:1128–38.

    Article  Google Scholar 

  • Kephart, S., and C. Paladino. 1997. Demographic change and microhabitat variability in a grassland endemic, Silene douglasii var. oraria (Caryophyllaceae). American Journal of Botany 84:179–89.

    Article  CAS  Google Scholar 

  • Baraloto, C., and D. E. Goldberg. 2004. Microhabitat associations and seedling bank dynamics in a neotropical forest. Oecologia 141:701–12.

    Article  Google Scholar 

  • Maschinski, J., S. J. Wright, K. S. Wendelberger, H. E. B. Thornton, and A. Muir. 2003. Conservation of South Florida Endangered and Threatened Flora: Final report. Gainesville: Florida Department of Agriculture and Consumer Services. Contract #007182.

    Google Scholar 

  • Pipoly, J. I., J. Maschinski, J. B. Pascarella, S. J. Wright, and J. Fisher. 2006. Demography of Coastal Dunes Vines: Endangered Jacquemontia reclinata, Endangered Okenia hypogaea, and Threatened Cyperus pedunculatus, from South Florida. Final report to the Florida Fish and Wildlife Conservation Commission, Tallahassee, FL.

    Google Scholar 

  • Iriondo, J. M., M. J. Alber, and A. Escudero. 2003. Structural equation modeling: An alternative for assessing causal relationships in threatened plant populations. Biological Conservation 113:367–77.

    Article  Google Scholar 

  • Batllori, E., J. J. Camarero, J. M. Ninot, and E. Gutierrez. 2009. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones: Implications and potential responses to climate warming. Global Ecology and Biogeography 18:460–72.

    Article  Google Scholar 

  • Collins, S. L., and R. E. Good. 1987. The seedling regeneration niche: Habitat structure of tree seedlings in an oak-pine forest. Oikos 48:89–98.

    Article  Google Scholar 

  • Wright, S. J. 2003a. Attributes of wild J. reclinata plants and associated habitats/microenvironments. In Restoration of Jacquemontia reclinata to the South Florida Ecosystem. Final Report to the US Fish and Wildlife Service for Grant Agreement 1448-40181-99- G-173, edited by J. Maschinski, S. J. Wright, and H. Thornton, 97–100. Vero Beach, FL: Fairchild Tropical Botanic Garden.

    Google Scholar 

  • Wright, S. J. 2003b. Effects of environmental gradients within the coastal dune on survivorship of outplantings. In Restoration of Jacquemontia reclinata to the South Florida Ecosystem. Final Report to the US Fish and Wildlife Service for Grant Agreement 1448-40181-99-G-173, edited by J. Maschinski, S. J. Wright, and H. Thornton, 184–88. Vero Beach, FL: Fairchild Tropical Botanic Garden.

    Google Scholar 

  • Larkin, D., G. Vivian-Smith, and J. B. Zedler. 2006. Topographic heterogeneity theory and ecological restoration. In Foundations of Restoration Ecology, edited by D. A. Falk, M. A. Palmer, and J. B. Zedler, 142–64, Washington, DC: Island Press.

    Google Scholar 

  • Wendelberger, K. S., M. Q. N. Fellows, and J. Maschinski. 2008. Rescue and restoration: Experimental translocation of Amorpha herbacea Walter var. crenulata (Rybd.) Isley into a novel urban habitat. Restoration Ecology 16:542–52.

    Article  Google Scholar 

  • Marsico, T. D., and J. J. Hellmann. 2009. Dispersal limitation inferred from an experimental translocation of Lomatium (Apiaceae) species outside their geographic ranges. Oikos 118:1783–92.

    Article  Google Scholar 

  • Matyas, C., and C. W. Yeatman. 1992. Effect of geographical transfer on growth and survival of jackpine Pinus banksiana Lamb. populations. Silvae Genetica 41:370–76.

    Google Scholar 

  • Ackerly, D. D. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Science 164:S163-84.

    Google Scholar 

  • Falk, D. A. 1990. Integrated strategies for conserving plant genetic diversity. Annals of the Missouri Botanical Garden 77:38–47.

    Article  Google Scholar 

  • Thomson, A. M., and W. H. Parker. 2008. Boreal forest provenance tests used to predict optimal growth and response to climate change. 1. Jack pine. Canadian Journal of Forest Research 38:157–70.

    Article  Google Scholar 

  • Harper, J. L. 1977. Population Biology of Plants. New York: Academic Press.

    Google Scholar 

  • Molofsky, J., and C. K. Augspurger. 1992. The effect of leaf litter on early seedling establishment in a tropical forest. Ecology 73:68–77.

    Article  Google Scholar 

  • Renison, D., A. M. Cingolani, R. Suarez, E. Menoyo, C. Coutsiers, A. Sobral, and I. Hensen. 2005. The restoration of degraded mountain woodlands: Effects of seed provenance and microsite characteristics on Polylepis australis seedling survival and growth in central Argentina. Restoration Ecology 13:129–37.

    Article  Google Scholar 

  • Akasaka, M., and S. Tsuyuzaki. 2005. Tree seedling performance in microhabitats along an elevational gradient on Mount Koma, Japan. Journal of Vegetation Science 16:647–54.

    Article  Google Scholar 

  • Gann, G. D., K. A. Bradley, and S. W. Woodmansee. 2002. Rare Plants of South Florida: Their History, Conservation, and Restoration. Miami, FL: The Institute for Regional Conservation.

    Google Scholar 

  • Possley, J., and J. Maschinski. 2009. Year 6 Report: Biological Monitoring for Plant Conservation in Miami-Dade County Natural Areas. Prepared by Fairchild Tropical Botanic Garden for Miami-Dade County Resolution #R-808-07.

    Google Scholar 

  • Beyra Matos, A. 1998. Las leguminosas (Fabaceae) de Cuba, II. Tribus Crotalarieae, Aeschynoimeneae, Millettieae y Robinieae. Institute Botanica. Collectanea Botanica 24:263.

    Google Scholar 

  • Maschinski, J. 2006. Implications of population dynamic and metapopulation theory for restoration. In Foundations of Restoration Ecology, edited by D. A. Falk, M. A. Palmer, and J. B. Zedler, 59–87. Washington, DC: Island Press.

    Google Scholar 

  • Araujo, M., and A. Guisan. 2006. Five (or so) challenges for species distribution modeling. Journal of Biogeography 33:1677–88.

    Article  Google Scholar 

  • Gaston, K. J. 1994. Rarity. London: Springer.

    Book  Google Scholar 

  • Martinez-Meyer, E., A. T. Peterson, J. I. Servin, and L. F. Kiff. 2006. Ecological niche modeling and prioritizing areas for species reintroductions. Oryx 40:411–18.

    Article  Google Scholar 

  • MacDonald, G. M., and R. A. Case. 2005. Variations in the Pacific Decadal Oscillation over the past millennium. Geophysical Research Letters 32:L08703.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Island Press

About this chapter

Cite this chapter

Maschinski, J., Falk, D.A., Wright, S.J., Possley, J., Roncal, J., Wendelberger, K.S. (2012). Optimal Locations for Plant Reintroductions in a Changing World. In: Maschinski, J., Haskins, K.E., Raven, P.H. (eds) Plant Reintroduction in a Changing Climate. The Science and Practice of Ecological Restoration. Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-183-2_7

Download citation

Publish with us

Policies and ethics