Extinctions in Deep Time

  • Peter J. Mayhew


Deep time is geologic time, extending to the origin of the planet. For biologists in search of an understanding of extinction, the relevant portion of deep time is that in which life has existed on the planet— about the last 4 billion years (Cowen, 2000). Extinctions are first recorded when the fossil record is robust enough to offer insights into the arrival and disappearance of groups of organisms (Benton and Harper, 2009). Extinctions in deep time can therefore be identified only over about the last 600 million years, an interval of time dominated by the Phanerozoic eon (540 million years ago to present).


Mass Extinction Extinction Rate Taxonomic Richness Large Igneous Province Continental Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguirre, J., and Riding, R. 2005. “Dasycladalean algal biodiversity compared with global variations in temperature and sea level over the past 350 Myr.” Pcdaios 20: 581-588.Google Scholar
  2. Alroy, J. 2008. “Dynamics of origination and extinction in the marine fossil record.” Proceedings of the National Academy of Sciences, USA 105 (Suppl. 1): 11536-11542.CrossRefGoogle Scholar
  3. Alroy, J. 2010. “Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification.” Palaeontology 53: 1211-1235.CrossRefGoogle Scholar
  4. Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fursich, F. T., Harries, P. J., Hendy, A. J. W., et al. 2008. “Phanerozoic trends in the global diversity of marine invertebrates.” Science 321: 97-100.CrossRefGoogle Scholar
  5. Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V 1980. “Extraterrestrial cause for the Cretaceous-Tertiary extinction.” Science 208: 1095-1108.CrossRefGoogle Scholar
  6. Arens, N. C., and West, I. D. 2008. “Press-pulse: A general theory of mass extinction?” Paleobiology 34: 456-471.CrossRefGoogle Scholar
  7. Benton, M. J., ed. 1993. The Fossil Record 2. London: Chapman &Hall.Google Scholar
  8. Benton, M. J. 1995. “Diversification and extinction in the history of life.” Science 268: 52-58.CrossRefGoogle Scholar
  9. Benton, M. J. 1997. “Models for the diversification of life.” Trends in Ecology and Evolution 12: 490-495.CrossRefGoogle Scholar
  10. Benton, M. J. 2005. When Life Nearly Died. London: Thames and Hudson.Google Scholar
  11. Benton, M. J. 2009. “The red queen and the court jester: Species diversity and the role of biotic and abiotic factors through time.” Science 323: 728-732.CrossRefGoogle Scholar
  12. Benton, M. J., and Harper, D. A. T. 2009. Introduction to Paleobiology and the Fossil Record. Chichester: John Wiley & Sons Ltd.Google Scholar
  13. Berner, R. A., and Kothavala, Z. 2001. “GEOCARBIII: A revised model of atmospheric CO2 over Phanerozoic time.” American Journal of Science 301: 182204.CrossRefGoogle Scholar
  14. Cornette, J. L., Lieberman, B. S., and Goldstein, R. H. 2002. “Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels.” Proceedings of the National Academy of Sciences, USA 99: 7832-7835.CrossRefGoogle Scholar
  15. Cowen, R. 2000. The History of Life, 4th ed. Oxford: Blackwell.Google Scholar
  16. Davis, R. B., Baldauf, S. B., and Mayhew, P. J. 2010. “Many hexapod groups originated earlier and withstood extinction events better than previously realized: Inferences from supertrees.” Proceedings of the Royal Society B 277: 15971606.CrossRefGoogle Scholar
  17. Foote,M. 2000. “Origination and extinction components of taxonomic diversity: General problems.”Paleobiology 26 (4, Supplement): 74-102.CrossRefGoogle Scholar
  18. Frakes, L. A., Francis, J. E., and Syktus, J. I. 1992. Climate Modes of the Phanerozoic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Gaston, K. J., and Blackburn, T. M. 2000. Pattern and Process inMacroecology. Oxford: Blackwell.CrossRefGoogle Scholar
  20. Jaramillo, C., Rueda, M. J., “Pre-Quaternary changes of sea-level.” Annual Review of Earth and Planetary Science 12: 205-243.CrossRefGoogle Scholar
  21. Jaramillo, C., Rueda, M. J., and Mora, G. 2006. “Cenozoic plant diversity in the neotropics.” Science 311: 1893-1896.CrossRefGoogle Scholar
  22. Kalmar, A., and Currie, D. J. 2010. “The completeness of the continental fossil record and its impact on patterns of diversification.” Paleobiology 36: 51-60.CrossRefGoogle Scholar
  23. Keller, G. 2001. “The end-cretaceous mass-extinction in the marine realm: Year 2000 assessment.” Planetary and Space Science 49: 817-830.CrossRefGoogle Scholar
  24. Kirchner, J. W., and Weil, A. 2000. “Delayed biological recovery from extinctions throughout the fossil record.” Nature 404: 177-180.CrossRefGoogle Scholar
  25. May, R. M., Lawton, J. H., and Stork, N. E. 1995. “Assessing extinction rates.” In Extinction Rates, edited by J. H. Lawton and R. M. May, 1-24. Oxford: Oxford University Press.Google Scholar
  26. Mayhew, P. J. 2011. “Global climate and extinction: Evidence from the fossil record.” In Climate Change, Ecology and Systematics, edited by T. Hodkinson, M. Jones, S. Waldren, and J. Parnell, 99-121. Systematics Association Special Series. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Mayhew, P. J., Jenkins, G. B., and Benton, T. G. 2008. “A long-term association between global temperature and biodiversity, origination and extinction in the fossil record.” Proceedings of the Royal Society B 275: 47-53.CrossRefGoogle Scholar
  28. McCarthy, D. 2009. Here Be Dragons:How the Study of Animal and Plant Distributions Revolutionized Our Views of Life and Earth. Oxford: Oxford University Press.Google Scholar
  29. Medvedev, M. V., and Melott, A. L. 2007. “Do extragalactic cosmic rays induce cycles in fossil diversity?”AstrophysicalJournal 664: 879-889.CrossRefGoogle Scholar
  30. Melott, A. L. 2008. “Long-term cycles in the history of life: Periodic biodiversity in the Paleobiology database.” PLoS ONE 3: e4044.CrossRefGoogle Scholar
  31. Meyer, K. M., and Kump, L. R. 2008. “Oceanic euxinia in Earth history: Causes and consequences.” Annual Review of Earth and Planetary Sciences 36: 251-288.CrossRefGoogle Scholar
  32. Payne, J. L., and Finnegan, S. 2007. “The effect of geographic range on extinction risk during background and mass extinction.” Proceedings of the National Academy of Sciences, USA 104: 10506-10511.CrossRefGoogle Scholar
  33. Peters, S. E. 2005. “Geologic constraints on the macroevolutionary history of marine animals.” Proceedings of the National Academy of Sciences, USA 102: 1236-1331.CrossRefGoogle Scholar
  34. Peters, S. E. 2006. “Genus extinction, origination, and the durations of sedimentary hiatuses.” Paleobiology 32: 387-407.CrossRefGoogle Scholar
  35. Peters, S. E. 2008. “Environmental determinants of extinction selectivity in the fossil record.” Nature 454: 626-629.CrossRefGoogle Scholar
  36. Purdy, E. G. 2008. “Comparison of taxonomic diversity, strontium isotope and sea-level patterns.” InternationalJournal of Earth Science 97: 651-664.CrossRefGoogle Scholar
  37. Raup, D. M., and Sepkoski, J. J., Jr. 1982. “Mass extinctions in the marine fossil record.” Science 215: 1501-1503.CrossRefGoogle Scholar
  38. Rohde, R. A., and Muller, R. A. 2005. “Cycles in fossil diversity.” Nature 434: 208-210.CrossRefGoogle Scholar
  39. Ross, M. 2009. The Search for Extraterrestrials: Intercepting Alien Signals. Berlin: Springer.Google Scholar
  40. Rothman, D. H. 2001. “Global biodiversity and the ancient carbon cycle.” Proceedings of the National Academy of Sciences, USA 98: 4305-4310.CrossRefGoogle Scholar
  41. Rothman, D. H. 2002. “Atmospheric carbon dioxide levels for the last 500 million years.” Proceedings of the National Academy of Sciences, USA 99: 4167-4171.CrossRefGoogle Scholar
  42. Royer, D. L., Berner, R. A., Montanez, I. P.,Tibor, N. J., and Beerling, D. J. 2004. “CO2 as a primary driver of Phanerozoic climate.” GSA Today 14: 4-10.CrossRefGoogle Scholar
  43. Schulte, P., Alegret,L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., et al. 2010. “The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary.” Science 327: 1214-1218.CrossRefGoogle Scholar
  44. Sepkoski, J. J., Jr. 2002. “A compendium of fossil marine animal genera.” Bulletins of American Paleontology 363: 1-560.Google Scholar
  45. Shaviv, N. J., and Veizer, J. 2003. “Celestial driver of Phanerozoic climate?” GSA Today 13: 4-10.CrossRefGoogle Scholar
  46. Sheehan, P. M. 2001. “The Late Ordovician mass extinction.” Annual Review of Earth and Planetary Sciences 29: 331-364.CrossRefGoogle Scholar
  47. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., et al. 2004. “Extinction risk from climate change.” Nature 427: 145-148.CrossRefGoogle Scholar
  48. Valentine, J. W., and Moores, E. M. 1970. “Plate-tectonic regulation of faunal diversity and sea level: A model.”Nature 228: 657-659.CrossRefGoogle Scholar
  49. Veizer, J., Godderis, Y., and François, L. M. 2000. “Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon.” Nature 408: 698-701.CrossRefGoogle Scholar
  50. Wake, D. B., and Vredenburg, V T. 2008. “Are we in midst of the sixth mass extinction? A view from the world of amphibians.” Proceedings of the National Academy of Sciences, USA 105: 11466-11473.CrossRefGoogle Scholar
  51. Ward, P. D. 2006. “Impact from the deep.” Scientific American October 2006, 6471.Google Scholar
  52. Wignall, P. B. 2001. “Large igneous provinces and mass extinctions.” Earth-Science Reviews 53: 1-33.CrossRefGoogle Scholar
  53. Wignall, P. B. 2005. “The link between large igneous province eruptions and mass extinctions.” Elements 1: 293-297.CrossRefGoogle Scholar
  54. Woodward, F. I., and Kelly, C. K. 2008. “Responses of global plant biodiversity capacity to changes in carbon dioxide concentration and climate.” Ecology Letters 11: 1229-1237.Google Scholar

Copyright information

© Island Press 2012

Authors and Affiliations

  • Peter J. Mayhew
    • 1
  1. 1.University of YorkYorkUK

Personalised recommendations