Extinction Risk from Climate Change in Tropical Forests

  • Yadvinder Malhi


Tropical forests are biologically the richest biomes on Earth, home to half of global biodiversity and most of the insects described in the previous chapter. The prospects for the earth’s treasure of living organisms over this century are thus inevitability tied to the prospects of its greatest treasure houses, the tropical rain forest regions, whether influenced by deforestation or climate change. The extinction risk in tropical forests will have a large effect on total global extinction risk, but like that of insects is currently difficult to quantify because of several key unknowns. This chapter explores the nature of contemporary and likely future climate change in the tropics, and possible implications for the biodiversity and functioning of tropical ecosystems. It begins by reviewing the likely nature of tropical climate change, then explores the likely response of tropical organisms to such change. It highlights key uncertainties in estimation of extinction risk from climate change, including the likely pattern of precipitation change, the influence of carbon dioxide on forest persistence, the upper thermal tolerance and adaptation/acclimation ability of tropical organisms, and the relationship between habitat restriction and extinction risk.


Tropical Forest Thermal Tolerance Extinction Risk Tropical Temperature Thermal Niche 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Carol MacSweeney extracted the data on zonal climate trends, and the chapter benefited from discussions with Kathy Willis. The author is supported by the Jackson Foundation.


  1. Alencar, A. A. C., L. A. Solorzano, and D. C. Nepstad. 2004. “Modeling forest understory fires in an Eastern Amazonian landscape.” Ecological Applications 14: S139-S149.CrossRefGoogle Scholar
  2. Aragao L. E. O. C., Y. Malhi, R. M. Roman-Cuesta, S. Saatchi, L. O. Anderson, and Y. E. Shimabukuro. 2007. “Spatial patterns and fire response of recent Amazonian droughts.” Geophysical Research Letters 34: L07701.CrossRefGoogle Scholar
  3. Atkin, O. K., and M. G.Tjoelker. 2003. “Thermal acclimation and the dynamic response of plant respiration to temperature.” Trends in Plant Science 8: 343351.CrossRefGoogle Scholar
  4. Baker, T. R., O. L. Phillips, Y. Malhi, S. Almeida, L. Arroyo, A. DiFiore, T. Erwin, et al. 2004. “Increasing biomass in Amazonian forests.” Philosophical Transactions of Royal Society of London-B Biological Sciences 359: 353-365.CrossRefGoogle Scholar
  5. Barlow, J., and C. A. Peres. 2008. “Fire-mediated dieback and compositional cascade in an Amazonian forest.” Philosophical Transactions of Royal Society of London-B Biological Sciences 363: 1787-1794.CrossRefGoogle Scholar
  6. Bush, M. B., M. R. Silman, and D. H. Urrego. 2004. “48,000 years of climate and forest change in a biodiversity hot spot.” Science 303: 827-829.CrossRefGoogle Scholar
  7. Butt, N., M. New, G. Lizcano, and Y. Malhi. 2009. “Spatial patterns and recent trends in cloud fraction and cloud-related diffuse radiation in Amazonia.” Journal of Geophysical Research-Atmospheres 114.Google Scholar
  8. Campbell, C., L. Atkinson, J. Zaragoza-Castells, M. Lundmark, O. Atkin, and V Hurry. 2007. “Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group.” NewPhytologist 176: 375-389.Google Scholar
  9. Chen, I. C., H. J. Shiu, S. Benedick, J. D. Holloway, V K. Cheye, H. S. Barlow, J. K. Hill, and C. D. Thomas. 2009. “Elevation increases in moth assemblages over 42 years on a tropical mountain.” Proceedings of the National Academy of Sciences, USA 106: 1479-1483.CrossRefGoogle Scholar
  10. Clark, D. A., S. C. Piper, C. D. Keeling, and D. B. Clark. 2003. “Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000.” Proceedings of the National Academy of Sciences 100: 5852-5857.CrossRefGoogle Scholar
  11. Colwell, R. K., G. Brehm, C. L. Cardelus, A. C. Gilman, and J. T. Longino. 2008. “Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.” Science 322: 258-261.CrossRefGoogle Scholar
  12. Condit, R., S. Aguilar, A. Hernandez, R. Perez, S. Lao, G. Angehr, S. Hubbell, and R. Foster. 2004. “Tropical forest dynamics across a rainfall gradient and the impact of an El Nino dry season.” Journal of Tropical Ecology 20: 51-72.CrossRefGoogle Scholar
  13. Cox, P. M., P. P. Harris, C. Huntingford, R. A. Betts, M. Collins, C. D. Jones, T. E. Jupp, J. A. Marengo, and C. A. Nobre. 2008. “Increasing risk of Amazonian drought due to decreasing aerosol pollution.” Nature 453 (7192) (May): 212-215.Google Scholar
  14. Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak, et al. 2008. “Impacts of climate warming on terrestrial ectotherms across latitude.” Proceedings of the National Academy of Sciences, USA 105: 6668-6672.CrossRefGoogle Scholar
  15. Feeley, K. J., and M. R. Silman. 2010. “Biotic attrition from tropical forests correcting for truncated temperature niches.” Global Change Biology 16: 18301836.Google Scholar
  16. Feeley, K. J., M. R. Silman, M. B. Bush, W Farfan, K. G. Cabrera, Y. Malhi, P. Meir, N. S. Revilla, M. N. R. Quisiyupanqui, and S. Saatchi. 2011. “Upslope migration of Andean trees.” Journal of Biogeography 38: 783-791.CrossRefGoogle Scholar
  17. Fisher, R. A., M. Williams, A. L. da Costa, Y. Malhi, R. F. da Costa, et al. 2007. “The response of an E. Amazonian rain forest to drought stress: Results and modelling analyses from a throughfall exclusion experiment.” Global Change Biology 13: 2361-2378.CrossRefGoogle Scholar
  18. Grainger, A., D. H. Boucher, P. C. Frumhoff, W F. Laurance, T. Lovejoy, J. McNeely, M. Niekisch, et al. 2009. “Biodiversity and REDD at Copenhagen.” Current Biology 19: R974-R976.CrossRefGoogle Scholar
  19. Huber, M. 2008. “A hotter greenhouse?” Science 321: 353-354.CrossRefGoogle Scholar
  20. Jaramillo, C., D. Ochoa, L. Contreras, M. Pagani, H. Carvajal-Ortiz, L. M. Pratt, S. Krishnan, et al. 2010. “Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation.” Science 330: 957-961.CrossRefGoogle Scholar
  21. Lewis, S. L., G. Lopez-Gonzalez, B. Sonke, K. Affum-Baffoe, T. R. Baker, L. O. Ojo, et al. 2009. “Increasing carbon storage in intact African forests.” Nature 457: 1003-1006.CrossRefGoogle Scholar
  22. Maley, J. 2001. “A catastrophic destruction of African forests around 2,500 years ago still exerts a major influence on present vegetation formations.” IDS-Bulletin of Development Studies 33:13-20.CrossRefGoogle Scholar
  23. Malhi, Y., and J. Wright. 2004. “Spatial patterns and recent trends in the climate of tropical rainforest regions.” Philosophical Transactions of Royal Society of London-B Biological Sciences 359: 311-329.CrossRefGoogle Scholar
  24. Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W H. Li, et al. 2008. “Climate change, deforestation, and the fate of the Amazon.” Science 319: 169-172.CrossRefGoogle Scholar
  25. Malhi, Y., L. E. O. C. Aragao, D. Galbraith, C. Huntingford, R. Fisher, P. Zelazowski, et al. 2009. “Evaluating the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest.” Proceedings of the National Academy of Sciences, USA 106: 20610-20615.CrossRefGoogle Scholar
  26. Morley, R. J. 2000. Origin and Evolution of Tropical Rain Forests. Chichester: Wiley Blackwell.Google Scholar
  27. Nepstad, D. C., I. M. Tohver, D. Ray, P. Moutinho, and G. Cardinot. 2007. “Mortality of large trees and lianas following experimental drought in an Amazon forest.” Ecology 88: 2259-2269.CrossRefGoogle Scholar
  28. Phillips, O. L., R. V Martinez, L. Arroyo, T. R. Baker,T. Killeen, S. L. Lewis, et al. 2002. “Increasing dominance of large lianas in Amazonian forests.” Nature 418: 770-774.CrossRefGoogle Scholar
  29. Phillips, O. L., L. E. O. C. Aragao, S. L. Lewis, J. B. Fisher, J. Lloyd, G. LopezGonzalez, et al. 2009. “Drought sensitivity of the Amazon forest.” Science 323: 1344-1347.CrossRefGoogle Scholar
  30. Stevens, G. C. 1989. “The latitudinal variations in geographical range—how so many species coexist in the tropics.” American Naturalist 133: 240-256.CrossRefGoogle Scholar
  31. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, et al. 2004. “Extinction risk from climate change.” Nature 427: 145-148.Google Scholar
  32. Wang, H. C., M. J. Moore, P. S. Soltis, C. D. Bell, S. F. Brockington, R. Alexandre, et al. 2009. “Rosid radiation and the rise of angiosperm-dominated forests.” Proceedings of the National Academy of Sciences, USA 106: 3853-3858.CrossRefGoogle Scholar
  33. Williams, J. W, S. T. Jackson, and J. E. Kutzbach. 2007. “Projected distributions of novel and disappearing climates by 2100 AD.” Proceedings of the National Academy of Sciences, USA 104: 5738-5742.CrossRefGoogle Scholar
  34. Wright, S. J., O. Calderon, A. Hernandez, and S. Paton. 2006. “Are lianas increasing in importance in tropical forests? A 17-year record from Panama.” Ecology 85: 484-489.CrossRefGoogle Scholar
  35. Zachos, J., et al. 2001. “Trends, rhythms and aberrations in global climate 65 Ma to present.” Science 292: 686-693.CrossRefGoogle Scholar
  36. Zelazowski, P., Y. Malhi, C. Huntingford, S. Sitch, and J. B. Fisher. 2011. “Changes in the potential distribution of humid tropical forests on a warmer planet.” Philosophical Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences 369: 137-160.CrossRefGoogle Scholar

Copyright information

© Island Press 2012

Authors and Affiliations

  • Yadvinder Malhi
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations