Advertisement

Quaternary Extinctions and Their Link to Climate Change

  • Barry W. Brook
  • Anthony D. Barnosky
Chapter

Abstract

Millennia before the modern biodiversity crisis—a worldwide event being driven by the multiple impacts of anthropogenic global change—a mass extinction of large-bodied fauna occurred. After a million years of severe climatic fluctuations, during which the earth waxed and waned between frigid ice ages and warm interglacials, with apparently few extinctions, hundreds of species of mammals, flightless birds, and reptiles suddenly went extinct over the course of the last 50,000 years (Barnosky, 2009). Due both to our intrinsic fascination with huge prehistoric beasts and to the possible insights these widespread species losses might lend to the modern extinction problem, the mystery of the “megafaunal” (large animal) extinctions have led to much theorizing, modeling, and digging (for their fossils or environmental proxies) over the last 150 years (Martin, 2005). The topic continues to invoke strong scientific interest (Koch and Barnosky, 2006; Grayson, 2007; Gillespie, 2008; Barnosky and Lindsey, 2010; Nogues-Bravo et al., 2010; Price et al., 2011).

Keywords

Mass Extinction Natural Climate Change Flightless Bird Prehistoric People Direct Human Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Marc Carrasco, Kaitlin Maguire, Lee Hannah, and two anonymous reviewers for constructive comments. BWB’s research on this topic was supported by Australian Research Council grant DP0881764, and ADB’s by grant DEB-0543641 from the US National Science Foundation.

References

  1. Alroy, J. 2001. “A multispecies overkill simulation of the end-Pleistocene mega-faunal mass extinction.” Science 292: 1893-96.CrossRefGoogle Scholar
  2. Balmford, A. 1996. “Extinction filters and current resilience: The significance of past selection pressures for conservation biology.” Trends in Ecology and Evolution 11: 193-96.CrossRefGoogle Scholar
  3. Barnosky, A. D. 1986. “’Big game’ extinction caused by Late Pleistocene climatic change: Irish elk (Megalocerosgiganteus) in Ireland.” Quaternary Research 25: 128-35.Google Scholar
  4. Barnosky, A. D. 2001. “Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains.” Journal of Vertebrate Paleontology 21:172-185.CrossRefGoogle Scholar
  5. Barnosky, A. D. 2008. “Megafauna biomass tradeoff as a driver of Quaternary and future extinctions.” Proceedings of the National Academy of Sciences, USA 105: 11543-48.CrossRefGoogle Scholar
  6. Barnosky, A. D. 2009. Heatstroke: Nature in an Age of Global Warming. Washington, D.C.: Island Press.Google Scholar
  7. Barnosky, A. D., and E. L. Lindsey. 2010. “Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change.” Quaternary International 217:10-29.CrossRefGoogle Scholar
  8. Barnosky, A. D., E. A. Hadly, and C. J. Bell. 2003. “Mammalian response to global warming on varied temporal scales.” Journal of Mammalogy 84: 35468.CrossRefGoogle Scholar
  9. Barnosky, A. D., P. L. Koch, R. S. Feranec, S. L. Wing, and A. B. Shabel. 2004. “Assessing the causes of Late Pleistocene extinctions on the continents.” Science 306: 70-75.CrossRefGoogle Scholar
  10. Barnosky, A. D., N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz,T. B. Quental, C. Marshall, et al. 2011. “Has the Earth’s sixth mass extinction already arrived?” Nature 471: 51-57.CrossRefGoogle Scholar
  11. Benton, M. J. 2009. “The Red Queen and the Court Jester: Species diversity and the role of biotic and abiotic factors through time.” Science 323: 728-732.CrossRefGoogle Scholar
  12. Blois, J. L., and E. A. Hadly. 2009. “Mammalian response to Cenozoic climate change.” Annual Review of Earth and Planetary Sciences 37. doi:10.1146 /annurev.earth.031208.100055.Google Scholar
  13. Bodmer, R. E., J. F. Eisenberg, and K. H. Redford. 1997. “Hunting and the likelihood of extinction of Amazonian mammals.” Conservation Biology 11: 46066.CrossRefGoogle Scholar
  14. Brook, B. W. 2008. “Synergies between climate change, extinctions and invasive vertebrates.” Wildlife Research 35. doi: 10.1071/wr07116.
  15. Brook, B. W., and D. M. J. S. Bowman. 2004. “The uncertain blitzkrieg of Pleistocene megafauna “Journal of Biogeography 31: 517-23.Google Scholar
  16. Brook, B. W., and D. M. J. S. Bowman. 2005. “One equation fits overkill: Why allometry underpins both prehistoric and modern body size-biased extinctions.” Population Ecology 42: 147-51.Google Scholar
  17. Brook, B. W., and C. N. Johnson. 2006. “Selective hunting of juveniles as a cause of the imperceptible overkill of the Australian Pleistocene ‘megafauna.’“ Alcheringa Special Issue 1: 39-48.Google Scholar
  18. Brook, B. W., D. M. J. S. Bowman, D. A. Burney, T. F. Flannery, M. K. Gagan, R. Gillespie, C. N. Johnson, et al. 2007. “Would the Australian megafauna have become extinct if humans had never colonised the continent?” (Quaternary Science Reviews 26: 560-64.Google Scholar
  19. Brook, B. W., N. S. Sodhi, and C. J. A. Bradshaw. 2008. “Synergies among extinction drivers under global change.” Trends in Ecology and Evolution 23:453-60.CrossRefGoogle Scholar
  20. Bulte, E., R. D. Horan, and J. F. Shogren. 2006. “Megafauna extinction: A paleoeconomic theory of human overkill in the Pleistocene.” Journal of Economic Behavior & Organization 59: 297-323.CrossRefGoogle Scholar
  21. Burney, D. A., and T. F. Flannery. 2005. “Fifty millennia of catastrophic extinctions after human contact.” Trends in Ecology & Evolution 20: 395-401.CrossRefGoogle Scholar
  22. Damuth, J. 1981. “Population density and body size in mammals.” Nature 290: 699-700.CrossRefGoogle Scholar
  23. Duncan, R. P., T. M. Blackburn, and T. H. Worthy. 2002. “Prehistoric bird extinctions and human hunting.” Proceedings of the Royal Society of London B —Biological Sciences 269: 517-21.Google Scholar
  24. Fiedel, S. J. 2005. “Man’s best friend—mammoth’s worst enemy? A speculative essay on the role of dogs in Paleoindian colonization and megafaunal extinction.” World Archaeology 37: 11-25.CrossRefGoogle Scholar
  25. Gillespie, R. 2008. “Updating Martin’s global extinction model.” Quaternary Science Reviews 27: 2522-29.Google Scholar
  26. Gillespie, R., B. W Brook, and A. Baynes. 2006. “Short overlap of humans and megafauna in Pleistocene Australia.” Alcheringa Special Issue 1: 163-85.Google Scholar
  27. Graham, R. W., and E. L. Lundelius, Jr. 1984. “Coevolutionary disequilibrium and Pleistocene extinction.” In Quaternary Extinctions: A Prehistoric Revolution, edited by Paul S. Martin and Richard G. Klein, 223-49. Tucson: University of Arizona Press.Google Scholar
  28. Grayson, D. K. 2007. “Deciphering North American Pleistocene extinctions.” Journal of Anthropological Research 63: 185-213.Google Scholar
  29. Guthrie, R. D. 1984. “Alaskan megabucks, megabulls, and megarams: The issue of Pleistocene gigantism.” Contributions in Quaternary Vertebrate Paleontology: A Volume in Memorial to John E. Guilday. Carnegie Museum of Natural History Special Publication 8: 482-510.Google Scholar
  30. Guthrie, R. D. 2003. “Rapid body size decline in Alaskan Pleistocene horses before extinction.” Nature 426: 169-71.CrossRefGoogle Scholar
  31. Guthrie, R. D. 2006. “New carbon dates link climatic change with human colonization and Pleistocene extinctions.” Nature 441: 207-09.CrossRefGoogle Scholar
  32. Harcourt, A. H., S. A. Coppeto, and S. A. Parks. 2002. “Rarity, specialization and extinction in primates.” Journal of Biogeography 29: 445-56.Google Scholar
  33. Haynes, C. V 2008. “Younger Dryas ‘black mats’ and the Rancholabrean termination in North America.” Proceedings of the National Academy of Sciences, USA 105: 6520-25.CrossRefGoogle Scholar
  34. Hewitt, G. M. 1999. “Post-glacial re-colonization of European biota.” Biological Journal of the Linnean Society 68: 87-112.CrossRefGoogle Scholar
  35. Hijmans, R. J., and C. H. Graham. 2006. “The ability of climate envelope models to predict the effect of climate change on species distributions.” Global Change Biology 12: 2272-81.CrossRefGoogle Scholar
  36. IPCC. 2007. Intergovernmental Panel on Climate Change: Fourth Assessment Report (AR4). Available at http://www.ipcc.ch.
  37. Johnson, C. N. 2005. “What can the data on late survival of Australian megafauna tell us about the cause of their extinction?” Quaternary Science Reviews 24: 2167-72.CrossRefGoogle Scholar
  38. Koch, P. L., and A. D. Barnosky. 2006. “Late Quaternary extinctions: State of the debate.” Annual Review of Ecology, Evolution and Systematics 37: 215-50.CrossRefGoogle Scholar
  39. Lovejoy, T. E., and L. Hannah, eds. 2005. Climate Change and Biodiversity. New Haven: Yale University Press.Google Scholar
  40. Luthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegehnthaler, D. Raynaud, et al. 2008. “High-resolution carbon dioxide concentration record 650,000-800,000 years before present.” Nature 453: 379-82.Google Scholar
  41. Lyons, S. K., F. A. Smith, and J. H. Brown. 2004a. “Of mice, mastodons and men: Human-mediated extinctions on four continents.” Evolutionary Ecology Research 6: 339-58.Google Scholar
  42. Lyons, S. K., F. A. Smith, P. J. Wagner, E. P. White, and J. H. Brown. 2004b. “Was a ‘hyperdisease’ responsible for the late Pleistocene megafaunal extinction?” Ecology Letters 7: 859-68.CrossRefGoogle Scholar
  43. MacPhee, R. D. E. 1999. Extinctions in Near Time: Causes, Contexts, and Consequences. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  44. Martin, P. S. 2005. Tmlight of the Mammoths: Ice Age Extinctions and the Rewilding of America. Berkeley: University of California Press.Google Scholar
  45. McKinney, M. L. 1997. “Extinction vulnerability and selectivity: Combining ecological and paleontological views.” Annual Review of Ecology and Systematics 28: 495-516.CrossRefGoogle Scholar
  46. Miller, G. H., M. L. Fogel, J. W Magee, M. K. Gagan, S. J. Clarke, and B. J. Johnson. 2005. “Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction.” Science 309: 287-90.CrossRefGoogle Scholar
  47. Nogues-Bravo, D., J. Rodiguez, J. Hortal, P. Batra, and M. B. Araujo. 2008. “Climate change, humans, and the extinction of the woolly mammoth.” PLoS Biology 6: 685-92.CrossRefGoogle Scholar
  48. Nogues-Bravo, D., Ohlemuller, R., Batra P., and Araujo, M. B. 2010. “Climate predictors of late Quaternary extinctions.” Evolution 64: 2442-49.Google Scholar
  49. Overpeck, J. T., C. Whitlock, and B. Huntley. 2003. “Terrestrial biosphere dynamics in the climate system: Past and future.” In Paleoclimate, Global Change and the Future, edited by R. S. Bradley, T. F. Pedersen, K. D. Alverson, and K. F. Bergmann, 81-103. Berlin: Springer-Verlag.Google Scholar
  50. Parmesan, C. 2006. “Ecological and evolutionary response to recent climate change.” AnnualReview of Ecology Evolution and Systematics 37: 637-69.CrossRefGoogle Scholar
  51. Price, G. J., G. E. Webb, J. X. Zhao, Y. X. Feng, A. S. Murray, B. N. Cooke, S. A. Hocknull, and I. H. Sobbe. 2011. “Dating megafaunal extinction on the Pleistocene Darling Downs, eastern Australia: The promise and pitfalls of dating as a test of extinction hypotheses.” Quaternary Science Reviews 30: 899914.CrossRefGoogle Scholar
  52. Prideaux, G. J., J. A. Long, L. K. Ayliffe, J. C. Hellstrom, B. Pillans, W. E. Boles, M. N. Hutchinson, et al. 2007a. “An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia.” Nature 445: 422-25.CrossRefGoogle Scholar
  53. Prideaux, G. J., R. G. Roberts, D. Megirian, K. E. Westaway, J. C. Hellstrom, and J. I. Olley. 2007b. “Mammalian responses to Pleistocene climate change in southeastern Australia.” Geology 35: 33-36.CrossRefGoogle Scholar
  54. Steffen, W, P. J. Crutzen, and J. R. McNeill. 2007. “The Anthropocene: Are humans now overwhelming the great forces of nature?” Ambio 36: 614-21.CrossRefGoogle Scholar
  55. Stuart, A. J., P. A. Kosintsev, T. F. G. Higham, and A. M. Lister. 2004. “Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth.” Nature 431: 684-89.CrossRefGoogle Scholar
  56. Surovell, T., N. Waguespack, and P. J. Brantingham. 2005. “Global archaeological evidence for proboscidean overkill.” Proceedings of the National Academy of Sciences, USA 102: 6231-36.CrossRefGoogle Scholar
  57. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, et al. 2004. “Extinction risk from climate change.” Nature 427: 145-48.Google Scholar
  58. Tudge, C. 1989. “The rise and fall of Homo sapiens sapiens” Philosophical Transactions of the Royal Society of London B 325: 479-88.CrossRefGoogle Scholar
  59. West, G. B., and J. H. Brown. 2005. “The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization.” Journal of Experimental Biology 208: 1575-92.CrossRefGoogle Scholar
  60. Willis, K. J., K. D. Bennett, and D. Walker. 2004. “The evolutionary legacy of the Ice Ages.” Philosophical Transactions of the Royal Society of London B —Biological Sciences 359: 157-58.Google Scholar
  61. Wroe, S., and J. Field. 2006. “A review of the evidence for a human role in the extinction of Australian megafauna and an alternative interpretation.” Quaternary Science Reviews 25: 2692-703.CrossRefGoogle Scholar

Copyright information

© Island Press 2012

Authors and Affiliations

  • Barry W. Brook
    • 1
  • Anthony D. Barnosky
    • 2
  1. 1.University of Adelaide’s Environment Institute.AdelaideAustralia
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations