Advertisement

Topography and Vegetation Patterns in an Old-Growth Appalachian Forest: Lucy Braun, You Were Right!

  • Julia I. Chapman
  • Ryan W. McEwan
Chapter

Abstract

The biologically diverse Appalachian forests of eastern North America are an especially interesting and important example of the complex relationship between physiographic factors (e.g., elevation), disturbance processes, and long-term shifts in forest composition. Due to the widespread and often intense land-use practices of Euro-Americans, particularly circa 1880 to 1930, past human activity is an important component of the pattern and process we observe in forests of eastern North American today. Only a few small parcels of forest remain where dynamics have been driven mainly by nonanthropogenic phenomena, and these old-growth forests provide a crucial window to the past and an important baseline for the present and future. Understanding the historical and contemporary drivers of long-term dynamics has become an increasingly important goal in ecology as anthropogenically driven declines in biodiversity, including extinctions, and undesirable shifts in community composition threaten the performance of ecosystems as well as the benefits derived from them by humans (Pimm et al. 2014).

References

  1. Abrams, M. D. 1998. “The red maple paradox: What explains the widespread expansion of red maple in eastern forests?” BioScience48: 355–364.CrossRefGoogle Scholar
  2. Alexander, H. D., and M. A. Arthur. 2010. “Implications of a predicted shift from upland oaks to red maple on forest hydrology and nutrient availability” Canadian Journal of Forest Research40: 716–726.CrossRefGoogle Scholar
  3. Amatangelo, K. L., S. E. Johnson, D. A. Rogers, and D. M. Waller. 2014. “Trait-environment relationships remain strong despite 50 years of trait compositional change in temperate forests” Ecology95: 1780–1791.CrossRefGoogle Scholar
  4. Arthur, M. A., H. D. Alexander, D. C. Dey, C. J. Schweitzer, and D. L. Loftis. 2012. “Refining the oak-fire hypothesis for management of oak-dominated forests of the eastern United States” Journal of Forestry110: 257–266.CrossRefGoogle Scholar
  5. Boerner, R. E. J. 2006. “Unraveling the Gordian Knot: Interactions among vegetation, topography, and soil properties in the central and southern Appalachians” The Journal of the Torrey Botanical Society133: 321–361.CrossRefGoogle Scholar
  6. Braun, E. L. 1940. “An ecological transect of Black Mountain, Kentucky” Ecological Monographs10: 193–241.CrossRefGoogle Scholar
  7. Braun, E. L. 1942. “Forests of the Cumberland Mountains” Ecological Monographs12: 413–447.CrossRefGoogle Scholar
  8. Braun, E. L. 1950. Deciduous Forests of Eastern North America. Philadelphia, PA: Blakiston.Google Scholar
  9. Chapman, J. I., and R. W. McEwan. 2016. “Thirty years of compositional change in an old-growth temperate forest: The role of topographic gradients in oak-maple dynamics.” PloS ONE11: e0160238.CrossRefGoogle Scholar
  10. Chave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson, and A. E. Zanne. 2009. “Towards a worldwide wood economics spectrum” Ecology Letters12: 351–366.CrossRefGoogle Scholar
  11. Chesson, P. 2000. “Mechanisms of maintenance of species diversity” Annual Review of Ecology and Systematics31: 343–366.CrossRefGoogle Scholar
  12. Cornwell, W. K., and D. D. Ackerly. 2009. “Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California” Ecological Monographs79: 109–126.CrossRefGoogle Scholar
  13. Coyle, J. R., F. W. Halliday, B. E. Lopez, K. A. Palmquist, P. A. Wilfahrt, and A. H. Hurlbert. 2014. “Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities” Ecography37: 814–826.CrossRefGoogle Scholar
  14. Culmsee, H., and C. Leuschner. 2013. “Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests” Journal of Biogeography40: 1997–2010.Google Scholar
  15. Fortunel, C., C. E. T. Paine, P. V. A. Fine, N. J. B. Kraft, and C. Baraloto. 2014. “Environmental factors predict community functional composition in Amazonian forests” Journal of Ecology102: 145–155.CrossRefGoogle Scholar
  16. Garnier, E., J. Cortez, G. Billès, M. L. Navas, C. Roumet, M. Debussche, G. Laurent, et al. 2004. “Plant functional markers capture ecosystem properties during secondary succession” Ecology85: 2630–2637.CrossRefGoogle Scholar
  17. Gleason, H. A. 1926. “The individualistic concept of the plant association” Bulletin of the Torrey Botanical Club53: 7–26.CrossRefGoogle Scholar
  18. Grime, J. P. 1977. “Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory” The American Naturalist111: 1169–1194.CrossRefGoogle Scholar
  19. Hardin, G. 1960. “The competitive exclusion principle” Science131: 1292–1297.CrossRefGoogle Scholar
  20. Harmon, M. E., C. W. Woodall, B. Fasth, and J. Sexton. 2008. “Woody detritus density and density reduction factors for tree species in the United States: A synthesis.” General Technical Report NRS-29. Northern Research Station. Newtown Square, PA: USDA Forest Service.CrossRefGoogle Scholar
  21. Kattge, J., S. Diaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bonisch, E. Garnier, et al. 2011. “TRY - a global database of plant traits” Global Change Biology17: 2905–2935.CrossRefGoogle Scholar
  22. Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. “Picante: R tools for integrating phylogenies and ecology” Bioinformatics26: 1463–1464.CrossRefGoogle Scholar
  23. Kitagawa, R., M. Mimura, A. S. Mori, and A. Sakai. 2015. “Topographic patterns in the phylogenetic structure of temperate forests on steep mountainous terrain.” AoB Plants7: plv134.CrossRefGoogle Scholar
  24. Kraft, N. J. B., R. Valencia, and D. D. Ackerly. 2008. “Functional traits and niche-based tree community assembly in an Amazonian forest” Science322: 580–582.CrossRefGoogle Scholar
  25. Laliberté, E., and P. Legendre. 2010. “A distance-based framework for measuring functional diversity from multiple traits” Ecology91: 299–305.CrossRefGoogle Scholar
  26. Lasky, J. R., I. F. Sun, S. H. Su, Z. S. Chen, and T. H. Keitt. 2013. “Trait-mediated effects of environmental filtering on tree community dynamics” Journal of Ecology101: 722–733.CrossRefGoogle Scholar
  27. Lorimer, C. G. 1984. “Development of the red maple understory in northeastern oak forests” Forest Science30: 3–22.Google Scholar
  28. Lovett, G. M., and M. J. Mitchell. 2004. “Sugar maple and nitrogen cycling in the forests of eastern North America” Frontiers in Ecology and the Environment2: 81–88.CrossRefGoogle Scholar
  29. Martin, W. H. 1975. “The Lilley Cornett Woods: A stable mixed mesophytic forest in Kentucky” Botanical Gazette136: 171–183.CrossRefGoogle Scholar
  30. Mason, N. W. H., F. De Bello, D. Mouillot, S. Pavoine, and S. Dray. 2013. “A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients” Journal of Vegetation Science24: 794–806.CrossRefGoogle Scholar
  31. McEwan, R. W., J. I. Chapman, and R. N. Muller. 2017. “Old-growth deciduous forest dynamics data archive, Lilley Cornett Woods.” https://doi.org/10.26890/gfg2uszb8v.CrossRefGoogle Scholar
  32. McEwan, R. W., J. M. Dyer, and N. Pederson. 2011. “Multiple interacting ecosystem drivers: Toward an encompassing hypothesis of oak forest dynamics across eastern North America” Ecography34: 244–256.CrossRefGoogle Scholar
  33. McEwan, R. W., and R. N. Muller. 2006. “Spatial and temporal dynamics in canopy dominance of an old-growth central Appalachian forest” Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere36: 1536–1550.CrossRefGoogle Scholar
  34. McEwan, R. W., R. N. Muller, and B. C. McCarthy. 2005. “Vegetation-environment relationships among woody species in four canopy-layers in an old-growth mixed mesophytic forest.” Castanea70: 32–46.CrossRefGoogle Scholar
  35. Muller, R. N. 1982. “Vegetation patterns in the mixed mesophytic forest of eastern Kentucky” Ecology63: 1901–1917.CrossRefGoogle Scholar
  36. Nowacki, G. J., and M. D. Abrams. 2008. “The demise of fire and “mesophication” of forests in the eastern United States” Bioscience58: 123–138.CrossRefGoogle Scholar
  37. Pederson, N., J. M. Dyer, R. W. McEwan, A. E. Hessl, C. J. Mock, D. A. Orwig, H. E. Rieder, and B. I. Cook. 2014. “The legacy of episodic climatic events in shaping temperate, broadleaf forests” Ecological Monographs84: 599–620.CrossRefGoogle Scholar
  38. Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. N. Joppa, P. H. Raven, et al. 2014. “The biodiversity of species and their rates of extinction, distribution, and protection.” Science344: 1246752.CrossRefGoogle Scholar
  39. Ricketts, T. H. T., E. Dinerstein, D. M. D. Olson, and C. Loucks. 1999. “Who’s where in North America? Patterns of species richness and the utility of indicator taxa for conservation” BioScience49: 369–381.CrossRefGoogle Scholar
  40. Royal Botanic Gardens Kew. 2017. “Seed Information Database (SID).” Version 7.1. http://data.kew.org/sid.
  41. Sabatini, F. M., J. I. Burton, R. M. Scheller, K. L. Amatangelo, and D. J. Mladenoff. 2014. “Functional diversity of ground-layer plant communities in old-growth and managed northern hardwood forests” Applied Vegetation Science17: 398–407.CrossRefGoogle Scholar
  42. Shotola, S. J., G. T. Weaver, P. A. Robertson, and W. C. Ashby. 1992. “Sugar maple invasion of an old-growth oak-hickory forest in southwestern Illinois” American Midland Naturalist127: 125–138.CrossRefGoogle Scholar
  43. Spasojevic, M. J., J. B. Grace, S. Harrison, and E. I. Damschen. 2014. “Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients” Journal of Ecology102: 447–455.CrossRefGoogle Scholar
  44. Spasojevic, M. J., and K. N. Suding. 2012. “Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes” Journal of Ecology100: 652–661.CrossRefGoogle Scholar
  45. Stahl, U., J. Kattge, B. Reu, W. Voigt, K. Ogle, J. Dickie, and C. Wirth. 2013. “Whole-plant trait spectra of North American woody plant species reflect fundamental ecological strategies.” Ecosphere4: 128.CrossRefGoogle Scholar
  46. Swenson, N. G. 2014. Functional and Phylogenetic Ecology in R. New York: Springer.CrossRefGoogle Scholar
  47. USDA, NRCS. 2017. “The PLANTS Database.” http://plants.usda.gov. Greensboro, NC: National Plant Data Team.Google Scholar
  48. Webb, C. O., D. D. Ackerly, and S. W. Kembel. 2008. “Phylocom: software for the analysis of phylogenetic community structure and trait evolution” Bioinformatics24: 2098–2100.CrossRefGoogle Scholar
  49. Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. “Phylogenies and community ecology” Annual Review of Ecology and Systematics33: 475–505.CrossRefGoogle Scholar
  50. Weiher, E., G. D,. P. Clarke, and P. A. Keddy. 1998. “Community assembly rules, morphological dispersion, and the coexistence of plant species” Oikos81: 309–322.CrossRefGoogle Scholar
  51. Weiher, E., and P. A. Keddy. 1995. “Assembly rules, null models, and trait dispersion, new questions from old patterns” Oikos74: 159–164.CrossRefGoogle Scholar
  52. Whittaker, R. H. 1956. “Vegetation of the Great Smoky Mountains” Ecological Monographs26: 1–80.CrossRefGoogle Scholar
  53. Wiens, J. J., D. D. Ackerly, A. P. Allen, B. L. Anacker, L. B. Buckley, H. V. Cornell, E. I. Damschen, et al. 2010. “Niche conservatism as an emerging principle in ecology and conservation biology” Ecology Letters13: 1310–1324.CrossRefGoogle Scholar
  54. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, et al. 2004. “The worldwide leaf economics spectrum” Nature428: 821–827.CrossRefGoogle Scholar

Copyright information

© Andrew M. Barton and William S. Keeton 2018

Authors and Affiliations

  • Julia I. Chapman
  • Ryan W. McEwan

There are no affiliations available

Personalised recommendations