Fire-Maintained Pine Savannas and Woodlands of the Southeastern United States Coastal Plain
Chapter
Abstract
Descriptions by early naturalists provide glimpses of presettlement southeastern coastal plain landscapes. Means (1996) quoted Bartram (1791): “This plain is mostly … the great long-leaved pine (P. palustris Linn.), the earth covered with grass, interspersed with an infinite variety of herbaceous plants, and embellished with extensive savannas, always green, sparkling with ponds of water…. We left the magnificent savanna …, passing through a level, open, airy pine forest, the stately trees scatteringly planted by nature, arising straight and erect from the green carpet, embellished with various grasses and flowering plants, and gradually ascending the sand hills … ”
References
- Andela, N., D. C. Morton, L. Giglio, Y. Chen, R. G. van der Werf, P. S. Kasibhatla, R. S. DeFries, et al. 2017. “A human-driven decline in global burned areas” Science356: 1356–1362.CrossRefGoogle Scholar
- Archibald, S., C. E. R. Lehmann, J. L. Gomez-Dans, and R. A. Bradstock. 2013. “Defining pyromes and global syndromes of fire regimes” Proceedings of the National Academy of Sciences of the United States of America110: 6442–6447.CrossRefGoogle Scholar
- Bartram, W. 1791. Travels through North & South Carolina, Georgia, East & West Florida. Philadelphia, PA: James and Johnson.Google Scholar
- Beckage, B., W. J. Platt, and L. Gross. 2009. “Vegetation, fire and feedbacks: A disturbance-mediated model of savannas” The American Naturalist174: 805–818.PubMedGoogle Scholar
- Carr, S. C., K. M. Robertson, W. J. Platt, and R. K. Peet. 2009. “A model of geographic, environmental and regional variation in vegetation composition of pyrogenic pinelands of Florida” Journal of Biogeography36: 1600–1612.CrossRefGoogle Scholar
- Clarke, P. J., M. J. Lawes, J. J. Midgley, B. B. Lamont, F. Ojeda, G. E. Burrows, N. J. Enright, et al. 2013. “Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire” New Phytologist197: 19–35.CrossRefGoogle Scholar
- Dell, J. E., L. A. Richards, J. J. O’Brien, E. L. Loudermilk, A. T. Hudak, S. M. Pokswinski, B. C. Bright, et al. 2017. “Overstory-derived surface fuels mediate plant species diversity in frequently burned longleaf pine forests.” Ecosphere8(10): e01964. doi: 10.1002/ecs2.1964.CrossRefGoogle Scholar
- Ellair, D. P., and W. J. Platt. 2013. “Fuel composition influences fire characteristics and understory hardwoods in pine savannas” Journal of Ecology101: 192–201.CrossRefGoogle Scholar
- Fill, J. M., S. M. Welch, J. L. Waldron, and T. A. Mousseau. 2012. “The reproductive response of an endemic bunchgrass indicates historical timing of a keystone process.” Ecosphere3, art61. http://dx.doi.org/10.1890/ES12-00044.1.CrossRefGoogle Scholar
- Fill, J. M., W. J. Platt, S. M. Welch, J. L. Waldron, and T. A. Mousseau. 2015. “Updating models for restoration and management of fiery ecosystems” Forest Ecology and Management356: 54–63.CrossRefGoogle Scholar
- Franklin, S., D. Faber-Langendoen, M. Jennings, T. Keeler-Wolf, O. Loucks, A. McKerrow, R. K. Peet, et al. 2012. “Building the United States National Vegetation Classification” Annali di Botanica2: 1–9.Google Scholar
- Frost, C. C. 1993. “Four centuries of changing landscape patterns in the longleaf pine ecosystem” Proceedings Tall Timbers Fire Ecology Conference18: 17–44.Google Scholar
- Frost, C. C. 2006. “History and future of the longleaf pine ecosystem.” In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration, edited by S. Jose, E. J. Jokela, and D. L. Miller, 9–42. New York: Springer-Verlag.CrossRefGoogle Scholar
- Gilliam, F. S., and W. J. Platt. 1999. “Effects of long-term fire exclusion on tree species composition and stand structure in an old-growth longleaf pine forest” Plant Ecology140: 15–26.CrossRefGoogle Scholar
- Glitzenstein, J. S., W. J. Platt, and D. R. Streng. 1995. “Effects of fire regime and habitat on tree dynamics in north Florida longleaf pine savannas” Ecological Monographs65: 441–476.CrossRefGoogle Scholar
- Grace, S. L., and W. J. Platt. 1995. “Effects of adult tree density and fire on the demography of pre-grass stage juvenile longleaf pine (Pinus palustris Mill.)” Journal of Ecology95: 75–86.CrossRefGoogle Scholar
- Grady, J. M., and W. A. Hoffmann. 2012. “Caught in a fire trap: recurring fire creates stable size equilibria in woody resprouters” Ecology93: 2052–2060.CrossRefGoogle Scholar
- Guyette, R. P., M. C. Stambaugh, D. C. Dey, and R. Muzika. 2012. “Predicting fire frequency with chemistry and climate” Ecosystems15: 322–335.CrossRefGoogle Scholar
- Hermann, S. M. 1993. “Small-scale disturbances in longleaf pine forests.” Proceedings of the Tall Timbers Fire Ecology Conference18: 263–274.Google Scholar
- Hiers, J. K., J. R. Walters, R. J. Mitchell, J. M. Varner, L. M. Conner, L. A. Blanc, and J. Stowe. 2014. “Ecological value of retaining pyrophytic oaks in longleaf pine ecosystems” Journal of Wildlife Management78: 383–393.CrossRefGoogle Scholar
- Hoctor, T. S., L. D. Harris, R. F. Noss, and K. A. Whitney. 2006. “Spatial ecology and restoration of the longleaf pine evosystem.” In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration, edited by S. Jose, E. J. Jokela, and D.L. Miller, 337-402. New York: Springer-Verlag.Google Scholar
- Hopper, S. D. 2009. “OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes” Plant and Soil322: 49–86.CrossRefGoogle Scholar
- Hopper, S. D., F. A. O. Silveira, and P. L. Fiedler. 2016. “Biodiversity hotspots and Ocbil theory” Plant and Soil403: 167–216.CrossRefGoogle Scholar
- Johnson, E. D., T. Spector, J. K. Hiers, D. Pearson, J. M. Varner, and J. Bente. 2018. “Defining old-growth stand characteristics in fragmented natural landscapes: a case study of old-growth pine in Florida (USA) state parks” Natural Areas Journal38: 88–98.CrossRefGoogle Scholar
- Kane, J. M., J. M. Varner, and J. K. Hiers. 2008. “The burning characteristics in southeastern oaks: discriminating fire facilitators from fire impeders” Forest Ecology and Management256: 2039–2045.CrossRefGoogle Scholar
- Keeley, J. E., J. G. Pausas, P. W. Rundel, W. J. Bond, and R. A. Bradstock. 2011. “Fire as an evolutionary pressure shaping plant traits” Trends in Plant Science16: 406–411.CrossRefGoogle Scholar
- Lamont, B. B., N. J. Enright, and T. He. 2011. “Fitness and evolution of resprouters in relation to fire” Plant Ecology212: 1945–1957.CrossRefGoogle Scholar
- Loudermilk, E. L., J. K. Hiers, S. Pokswinski, J. J. O’Brien, A. Barnett, and R. J. Mitchell. 2016. “The path back: oaks (Quercus spp.) facilitate longleaf pine (Pinus palustris) seedling establishment in xeric sites.” Ecosphere7: e01361. doi: 10.1002/ecs2.1361.CrossRefGoogle Scholar
- Means, D. B. 1996. “Longleaf Pine Forest, Going, Going, …” In Eastern Old-Growth Forests: Prospects for Rediscovery and Recovery, edited by M. B. Davis, 210–229. Washington, DC: Island Press.Google Scholar
- Mucina, L., and G. W. Wardell-Johnson. 2011. “Landscape age and soil fertility, climatic stability, and fire: beyond the OCBIL framework” Plant and Soil341: 1–23.CrossRefGoogle Scholar
- Mutch, R. W. 1970. “Wildland fires and ecosystems—A hypothesis.” Ecology51: 1046–1051.CrossRefGoogle Scholar
- Noel, J. M., W. J. Platt, and E. B. Moser. 1998. “Structural characteristics of old- and second-growth stands of longleaf pine (Pinus palustris) in the Gulf coastal region of the U.S.A” Conservation Biology12: 533–548.CrossRefGoogle Scholar
- Noss, R. F., W. J. Platt, B. A. Sorrie, A. S. Weakley, D. B. Means, J. Costanza, and R. K. Peet. 2015. “How global biodiversity hotspots may go unrecognized: Lessons from the North American coastal plain” Diversity and Distributions21: 236–244.CrossRefGoogle Scholar
- O’Donnell, F. C., K. K. Caylor, A. Bhattachan, K. Dintwe, P. D’Odorico, and G. S. Okin. 2015. “A quantitative description of the interspecies diversity of belowground structure in savanna woody plants.” Ecosphere6(9): 154. http://dx.doi.org/10.1890/ES14-00310.1.CrossRefGoogle Scholar
- Palmquist, K. A., R. K. Peet, and A. S. Weakley. 2014. “Changes in plant species richness following reduced fire frequency and drought in one of the most species-rich savannas in North America” Journal of Vegetation Science25: 1426–1437.CrossRefGoogle Scholar
- Palmquist, K. A., R. K. Peet, and S. R. Mitchell. 2015. “Scale-dependent responses of longleaf pine vegetation to fire frequency and environmental context across two decades” Journal ofEcology103: 998–1008.CrossRefGoogle Scholar
- Parr, C. L., C. E. R. Lehmann, W. J. Bond, W. A. Hoffmann, and A. N. Anderson. 2014. “Tropical grassy biomes: misunderstood, neglected, and under threat” Trends in Ecology and Evolution29: 205–213.CrossRefGoogle Scholar
- Pausas, J. 2017. “Evolutionary fire ecology: lessons learned from pines.” Trends in Plant Science20: 318–324.CrossRefGoogle Scholar
- Pausas, J. G., and E. Ribeiro. 2017. “Fire and plant diversity at the global scale.” Global Ecology and Biogeography26: 889–897.CrossRefGoogle Scholar
- Peet, R. K. 2006. “Ecological Classification of Longleaf Pine Woodlands.” In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration, edited by S. Jose, E. J. Jokela, and D. L. Miller, 51–93. New York: Springer-Verlag.CrossRefGoogle Scholar
- Peet, R. K., K. A. Palmquist, and S. M. Tessel. 2014. “Herbaceous layer species richness of southeastern forests and woodlands: patterns and causes.” In The Herbaceous Layer in Forests of Eastern North America, 2nd edition, edited by F. S. Gilliam and M. R. Roberts, 255–276. Oxford, England: Oxford University Press.CrossRefGoogle Scholar
- Platt, W. J. 1999. Southeastern pine savannas. In The Savanna, Barren, and Rock Outcrop Communities of North America, edited by R. C. Anderson, J. S. Fralish, and J. Baskin, 23–51. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
- Platt, W. J., R. F. Doren, and T. Armentano. 2000. “Effects of Hurricane Andrew on stands of slash pine (Pinus elliottii var. densa) in the everglades region of south Florida (USA)” Plant Ecology146: 43–60.CrossRefGoogle Scholar
- Platt, W. J., D. P. Ellair, J. M. Huffman, S. E. Potts, and B. Beckage. 2016. “Pyrogenic fuels produced by savanna trees can engineer humid savannas” Ecological Monographs86: 352–372.CrossRefGoogle Scholar
- Platt, W. J., A. K. Entrup, E. K. Babl, C. Coryell-Turpin, V. Dao, J. A. Hebert, C. D. LaBarbera, et al. 2015. “Short-term effects of herbicides and a prescribed fire on restoration of a shrub-encroached pine savanna” Restoration Ecology23: 909–917.CrossRefGoogle Scholar
- Platt, W. J., G. W. Evans, and M. M. Davis, 1988. “Effects of fire season on flowering of forbs and shrubs in longleaf pine forests” Oecologia76: 353–363.CrossRefGoogle Scholar
- Platt, W. J., G. W. Evans, and S. L. Rathbun. 1988. “The population dynamics of a long-lived conifer (Pinus palustris)” American Naturalist131: 491–525.CrossRefGoogle Scholar
- Platt, W. J., S. J. Orzell, and M. G. Slocum. 2015. “Seasonality of fire weather strongly influences fire regimes in south Florida savanna-grassland landscapes.” PLoS ONE10(1): e0116952.CrossRefGoogle Scholar
- Platt, W. J., and S. L. Rathbun. 1993. “Dynamics of an old-growth longleaf pine population” Proceedings Tall Timbers Fire Ecology Conference18: 275–297.Google Scholar
- Ratnam J., W. J. Bond, R. J. Fensham, W. A. Hoffmann, S. Archibald, C. E. R. Lehmann, M. T. Anderson, et al. 2011. “When is a ‘forest’ a savanna, and why does it matter?” Global Ecology and Biogeography20: 653–660.CrossRefGoogle Scholar
- Robertson, K. M., and T. E. Ostertag. 2007. “Effects of land use on fuel characteristics and fire behavior in pinelands of Southwest Georgia” Proceedings of the Tall Timbers Fire Ecology Conference23: 181–191.Google Scholar
- Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari. 2014. “Projected increase in lightning strikes in the United States due to global warming” Science346: 851–854.CrossRefGoogle Scholar
- Rother, M.T., J.M Huffman, G.L Harley, W.J Platt, N. Jones, K.M. Robertson, and S.L. Orzell. 2018. Cambial phenology informs tree-ring analysis of fire seasonality in Coastal Plain pine savannas. Fire Ecology 14(1): 164–185. doi: 10.4996/fireecology.140116418CrossRefGoogle Scholar
- Schafer, J. L., and M. G. Just. 2014. “Size dependency of post-disturbance recovery of multi-stemmed resprouting trees.” PLoS ONE9: e105600.CrossRefGoogle Scholar
- Schmitz, M., W. J. Platt, and J. DeCoster. 2002. “Substrate heterogeneity and numbers of plant species in Everglades savannas (Florida, USA)” Plant Ecology160: 137–148.CrossRefGoogle Scholar
- Simon, M. F., R. Grether, L. P. de Quelroz, C. Skema, R. T. Pennington, and C. E. Hughes. 2009. “Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire” Proceedings of the National Academy of Sciences106: 20359–20364.CrossRefGoogle Scholar
- Simpson, K. J., B. S. Ripley, P. Christin, C. M. Belcher, C. E. R. Lehmann, G. H. Thomas, C. P. Osborne, et al. 2016. “Determinants of flammability in savanna grass species” Journal of Ecology104: 138–148.CrossRefGoogle Scholar
- Slocum, M. G., B. Beckage, W. J. Platt, S. L. Orzell, and W. Taylor. 2010. “Effect of climate on wildfire size: A cross-scale analysis” Ecosystems13: 828–840.CrossRefGoogle Scholar
- Slocum, M. G., W. J. Platt, and H. C. Cooley. 2003. “Effects of differences in prescribed fire regimes on patchiness and intensity of fires in subtropical savannas of Everglades National Park, Florida” Restoration Ecology11: 91–102.CrossRefGoogle Scholar
- Sorrie, B. A., and A. S. Weakley. 2006. “Conservation of the endangered Pinus palustris ecosystem based on Coastal Plain cenrtes of plant endemism” Applied Vegetation Science9: 59–66.CrossRefGoogle Scholar
- Terando, A., J. K. Costanza, C. Belyea, R. R. Dunn, A. J. McKerrow, and J. A. Collazo. 2014. “The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S.” PLoS ONE9: e102261.CrossRefGoogle Scholar
- USGCRP, 2017. D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock, eds. Climate Science Special Report: Fourth National Climate Assessment, Volume I. Washington, DC: U.S. Global Change Research Program. doi: 10.7930/J0J964J6.CrossRefGoogle Scholar
- Varner, J. M., D. R. Gordon, F. E. Putz, and J. K. Hiers. 2005. “Restoring fire to long-unburned Pinus palustris ecosystems: novel fire effects and consequences for long-unburned ecosystems” Restoration Ecology13: 536–544.CrossRefGoogle Scholar
- Varner, J. M. III, and J. S. Kush. 2004. “Remnant old-growth longleaf pine (Pinus palustris Mill.) savannas and forests of the southeastern USA: Status and threats” Natural Areas Journal24: 141–149.Google Scholar
- Veldman, J. W., E. Buisson, G. Durigan, G. W. Fernandes, S. Le Stradic, G. Mahy, D. Negreiros, et al. 2015. “Toward an old-growth concept for grasslands, savannas, and woodlands” Frontiers in Ecology and the Environment13: 154–162.CrossRefGoogle Scholar
- Wahlenberg, W. G. 1946. Longleaf Pine. Its Use, Ecology, Regeneration, Protection, Growth, and Management. Washington, DC: Charles Lathrop Pack Forestry Foundation.Google Scholar
Copyright information
© Andrew M. Barton and William S. Keeton 2018