Skip to main content

Effect of climatic environment on feed efficiency in swine

  • Chapter
Feed efficiency in swine

Abstract

Since feed costs comprise about 60 to 70% of the total costs of production, efforts to reduce feed costs is then a major preoccupation for increasing competitiveness of the pig industry. Understanding the factors that affect feed conversion in pigs can enable producer to more effectively combine various inputs in order to achieve a low feeding cost. There are many factors involved in reaching good feed efficiency including genetic, diet, feed, management, housing and environment. Temperature is the single most important environmental factor affecting the global farm feed efficiency. In ad libitum fed animals, changes in metabolic heat production are essential mechanisms to maintain body temperature within a physiologically safe range under cold or heat stress. These adjustments have direct consequences on energy intake and/or maintenance requirements which in turn could reduce energy efficiency as conversion of feed to tissue or other products. However, the low level of performance related to a thermal challenge can also be attributed to a direct effect of ambient temperature (independent of feed intake) on reproductive physiology, health, and energy metabolism. Finally, thermal stress could also be a major cause of pig mortality at birth, during the nursing period or thereafter, and could predispose pigs to mortality or morbidity by other causes (starvation, diseases, etc.). High mortality rates in nursing piglets or in finishing pigs have a significant impact on overall farm feed efficiency. The chapter describes how climatic environment impacts feed efficiency in pigs and reviews solutions that can be used in order to attenuate the effect of environmental temperature on feed efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azain, M. J., T. Tomkins, J. S. Sowinski, R. A. Arentson, and D. E. Jewell. 1996. Effect of supplemental pig milk replacer on litter performance: seasonal variation in response. J. Anim. Sci. 74:2195–2202.

    PubMed  CAS  Google Scholar 

  • Barea, R., Dubois, S., Gilbert, H., Sellier, P., Van Milgen, J., and Noblet, J. 2010. Energy utilization in pigs selected for high and low residual feed intake. J. Anim Sci. 88:2062–2072.

    Article  PubMed  CAS  Google Scholar 

  • Berthon, D., P. Herpin, and J. l. Dividich. 1994. Shivering thermogenesis in the neonatal pig. J. Therm. Biol. 19:413–418.

    Article  Google Scholar 

  • Black, J. L., B. P. Mullan, M. L. Lorschy, and L. R. Giles. 1993. Lactation in the sow during heat stress. Livest. Prod. Sci. 35:153–170.

    Article  Google Scholar 

  • Brown-Brandl, T. M., R. A. Eigenberg, J. A. Nienaber, and S. D. Kachman. 2001. Thermoregulatory profile of a newer genetic line of pig. Livest. Prod. Sci. 71:253–260.

    Article  Google Scholar 

  • Brumm, M. C., and D. P. Shelton. 1988. A modified reduced nocturnal temperature regimen for early-weaned pigs. J. Anim. Sci. 66:1067–1072.

    PubMed  CAS  Google Scholar 

  • Brumm, M. C., and D. P. Shelton. 1991. Two reduced nocturnal temperature regimens for early-weaned pigs. J. Anim. Sci. 69:1379–1388.

    PubMed  CAS  Google Scholar 

  • Brumm, M. C., D. P. Shelton, and R. K. Johnson. 1985. Reduced nocturnal temperatures for early weaned pigs 1, 2, 3. J. Anim. Sci. 61:552–558.

    Google Scholar 

  • Cai, W., D. S. Casey, and J. C. M. Dekkers. 2008. Selection response and genetic parameters for residual feed intake in Yorkshire swine. J. Anim. Sci. 86:287–298.

    Article  PubMed  CAS  Google Scholar 

  • Canario, L., E. Cantoni, E. Le Bihan, J. C. Caritez, Y. Billon, J. P. Bidanel, and J. L. Foulley. 2006. Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. J. Anim. Sci. 84:3185–3196.

    Article  PubMed  CAS  Google Scholar 

  • Close, W. H. 1987. The influence of the thermal environment on the productivity of pigs. BSAP Occasional Publication 11:9–24.

    Google Scholar 

  • Close, W. H., and J. A. Clark. 1981. The climatic requirements of the pig Environmental aspects of housing for animal production No. Butterworths. p 149–166. Butterworths, London.

    Google Scholar 

  • Coffey, M. T., R. W. Seerley, D. W. Funderburke, and H. C. McCampbell. 1982. Effect of heat increment and level of dietary energy and environmental temperature on the performance of growing-finishing swine. J. Anim. Sci. 54:95–105.

    PubMed  CAS  Google Scholar 

  • Comberg, G., E. Stephan, and H. Spath. 1972. The reaction of German Landrace boar progeny groups to different climatic pen conditions. Pt. 3. Zuchtungskunde 44:402–415.

    Google Scholar 

  • Curtis, S. E. 1983. Environmental management in animal agriculture, Ames/Iowa.

    Google Scholar 

  • De Lange, C. F. M., J. van Milgen, J. Noblet, S. Dubois, and S. H. Birkett. 2002. Previous feeding level influences fasting heat production in growing pigs. J. Anim. Sci. 80 (suppl. 1):63.

    Google Scholar 

  • Dekkers, J. C. M., and H. Gilbert. 2010. Genetic and biological aspect of residual feed intake in pigs, Leipzig, Germany. p 8 pp.

    Google Scholar 

  • Dove, C. R., and K. D. Haydon. 1994. The effect of various diet nutrient densities and electrolyte balances on sow and litter performance during two seasons of the year. J. Anim. Sci. 72:1101–1106.

    PubMed  CAS  Google Scholar 

  • Edwards, R. L., I. T. Omtvedt, E. J. Turman, D. F. Stephens, and G. W. A. Mahoney. 1968. Reproductive performance of gilts following heat stress prior to breeding and in early gestation. J. Anim. Sci. 27:1634–1637.

    Google Scholar 

  • Feddes, J. J. R., J. A. DeShazer, and A. M. Parkhurst. 1988. Dynamic responses of growing pigs to high cyclic and constant temperature, St. Joseph, Mich. p 85–92.

    Google Scholar 

  • Geuyen, T. P. A., J. M. F. Verhagen, and M. W. A. Verstegen. 1984. Effect of housing and temperature on metabolic rate of pregnant sows. Animal Production 38:477–485.

    Article  Google Scholar 

  • Gilbert, H., J. P. Bidanel, J. Gruand, J. C. Caritez, Y. Billon, P. Guillouet, H. Lagant, J. Noblet, and P. Sellier. 2007. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. J. Anim Sci. 85:3182–3188.

    Article  PubMed  CAS  Google Scholar 

  • Henry, Y., and J. Noblet. 1986. Alimentation énergétique Le porc et son élevage. p. 233–260.

    Google Scholar 

  • Herpin, P., M. Damon, and J. Le Dividich. 2002. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78:25–45.

    Article  Google Scholar 

  • Herpin, P., J. Le Dividich, J. C. Hulin, M. Fillaut, F. De Marco, and R. Bertin. 1996. Effects of the level of asphyxia during delivery on viability at birth and early postnatal vitality of newborn pigs. J. Anim. Sci. 74:2067–2075.

    PubMed  CAS  Google Scholar 

  • Holmes, C. W., and W. H. Close. 1977. The influence of climatic variables on energy metabolism and associated aspects of productivity in the pig. p 51–73 in Nutrition and the climatic environment. Studies in the agricultural and food sciences. Butterworths, London, UK.

    Google Scholar 

  • Hrupka, B. J., V. D. Leibbrandt, T. D. Crenshaw, and N. J. Benevenga. 1998. The effect of farrowing crate heat lamp location on sow and pig patterns of lying and pig survival. J. Anim. Sci. 76:2995–3002.

    PubMed  CAS  Google Scholar 

  • Huynh, T. T. T., A. J. A. Aarnink, M. W. A. Verstegen, W. J. J. Gerrits, M. J. W. Heetkamp, B. Kemp, and T. T. Canh. 2005. Effects of increasing temperatures on physiological changes in pigs at different relative humidities. J. Anim. Sci. 83:1385–1396.

    PubMed  CAS  Google Scholar 

  • Ingram, D. L. 1964. The effect of environemental temperature on body temperature, respiratory frequency and pusle rate in the young pig. Research Veterinary Science 5:348–356.

    Google Scholar 

  • Jeon, J. H., S. C. Yeon, Y. H. Choi, W. Min, S. Kim, P. J. Kim, and H. H. Chang. 2006. Effects of chilled drinking water on the performance of lactating sows and their litters during high ambient temperatures under farm conditions. Livestock Science 105:86–93.

    Article  Google Scholar 

  • Johnston, L. J., M. Ellis, G. W. Libal, V. B. Mayrose, and W. C. Weldon. 1999. Effect of Room Temperature and Dietary Amino Acid Concentration on Performance of Lactating Sows. J. Anim. Sci. 77:1638–1644.

    PubMed  CAS  Google Scholar 

  • Kammersgaard, T. S., L. J. Pedersen, and E. Jorgensen. 2011. Hypothermia in neonatal piglets: Interactions and causes of individual differences. J. Anim. Sci. 89:2073–2085.

    Article  PubMed  CAS  Google Scholar 

  • Katsumata, M., Y. Kaji, and M. Saitoh. 1996. Growth and carcass fatness responses of finishing pigs to dietary fat supplementation at a high ambient temperature. Anim. Sci. 62:591–598.

    Article  Google Scholar 

  • Kemp, B., M. W. A. Verstegen, L. A. den Hartog, and H. J. G. Grooten. 1989. The effect of environemental temperature on metabolic rate and partitoning of energy intake in breeding boars. Livest. Prod. Sci. 23:329–340.

    Article  Google Scholar 

  • Koong, L. J., C. Ferrell, and J. A. Nienaber. 1985. Assessment of interrelationships among level of intake and production, organ size and fasting heat production in growing animals. J. Nutr. 115:1383–1390.

    PubMed  CAS  Google Scholar 

  • Kovacs, F., and P. Rafai. 1973. Metabolism in newborn and young pigsAz ujszulott es fiatal malacok anyagcserejenek vizsgalata. Magy. Allatorv. Lapja 28:182–187.

    Google Scholar 

  • Kuhn, J. 1990. Klimatisierung von Abferkelstallen. Deutsche Geflugelwirtschaft und Schweineproduktion 28:830–835.

    Google Scholar 

  • Labussiére, E., J. van Milgen, C. F. M. de Lange, and J. Noblet. 2011. Maintenance energy requirements of growing pigs and calves are influenced by feeding level. The Journal of Nutrition 141:1855–1861.

    Article  PubMed  CAS  Google Scholar 

  • Le Bellego, L., J. van Milgen, and J. Noblet. 2001. Effect of high temperature and energy intake on energy utilization in growing pigs. J. Anim. Sci. 79 (Suppl.1):211.

    Google Scholar 

  • Le Dividich, J. 1999. A review – Neonatal and weaner pig: management to reduce variation, Adelaide, South Australia. p 135–155.

    Google Scholar 

  • Le Dividich, J. 2006. The issue of colostrum in piglet survival: energy and immunity. Page 89–102. Nutritional biotechnology in the feed and food industries: Proceedings of Alltech’s 22nd Annual Symposium, Lexington, Kentucky, USA, 23–26 April 2006.

    Google Scholar 

  • Le Dividich, J., and P. Herpin. 1994. Effects of climatic conditions on the performance, metabolism and health status of weaned piglets: a review. Livest. Prod. Sci. 38:79–90.

    Article  Google Scholar 

  • Le Dividich, J., and J. Noblet. 1981. Colostrum intake and thermoregulation in the neonatal pig in relation to environmental temperature. Neonatology 40:167–174.

    Article  Google Scholar 

  • Le Dividich, J., J. Noblet, P. Herpin, J. van Milgen, N. Quiniou, J. Wiseman, M. A. Varley, and J. P. Chadwick. 1998. Thermoregulation progress in pig science. p 229–263. Nottingham University Press, Nottingham.

    Google Scholar 

  • Le Dividich, J., M. Vermorel, J. Noblet, J. C. Bouvier, and A. Aumaitre. 1980. Effects of environmental temperature on heat production, energy retention, protein and fat gain in early weaned piglets. Br. J. Nutr. 44:313–323.

    Article  PubMed  Google Scholar 

  • Leibbrandt, V. D., L. J. Johnston, G. C. Shurson, J. D. Crenshaw, G. W. Libal, and R. D. Arthur. 2001. Effect of nipple drinker water flow rate and season on performance of lactating swine. J. Anim. Sci. 79:2770–2775.

    PubMed  CAS  Google Scholar 

  • McGlone, J. J., W. F. Stansbury, and L. F. Tribble. 1988. Management of lactating sows during heat stress: effects of water drip, snout coolers, floor type and a high energy-density diet. J. Anim. Sci. 66:885–891.

    PubMed  CAS  Google Scholar 

  • Mellor, D. J., and F. Cockburn. 1986. A comparison of energy metabolism in the new-born infant, piglet and lamb. Exp. Physiol. 71:361–379.

    CAS  Google Scholar 

  • Messias de Bragança, M., A. M. Mounier, and A. Prunier. 1998. Does feed restriction mimic the effects of increased ambient temperature in lactating sows? J. Anim. Sci. 76:2017–2024.

    Google Scholar 

  • Mount, L. E., J. L. Monteith, and L. E. Mount. 1974. The concept of thermal neutrality Heat loss from animals and man. p 425–439. Butterworths, London.

    Google Scholar 

  • Mrode, R. A., and B. W. Kennedy. 1993. Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth rate and backfat. Animal Production 56:225–232.

    Article  Google Scholar 

  • Mroz, Z., A. W. Jongbloed, N. P. Lenis, and K. Vreman. 1995. Water in pig nutrition: physiology, allowances and environmental implications. Nutr. Res. Rev. 8:137–164.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, D. A., D. R. Ames, and R. H. Hines. 1979. Evaporative cooling systems for swine. Report of Progress, Agricultural Experiment Station, Kansas State University:6–9.

    Google Scholar 

  • Nichols, D. A., R. C. Thaler, J. P. Murphy, R. H. Hines, and J. L. Nelssen. 1987. The value of drip versus spray cooling at two flow rates to reduce heat stress of finishing pigs. Report of Progress, Agricultural Experiment Station, Kansas State University:58–60.

    Google Scholar 

  • Nienaber, J. A., and G. L. Hahn. 1983. Performance of growing-finishing swine in response to the thermal environment. In: Transactions of the American Society of Agricultural Engineers. p 1–32.

    Google Scholar 

  • Nienaber, J. A., and G. L. Hahn. 1989. Cool nighttime temperature and weaning age effects on 3 to 10 week old pigs. Transactions of the American Society of Agricultural Engineers 32:691–695.

    Google Scholar 

  • Nienaber, J. A., G. L. Hahn, and J. T. Yen. 1987. Thermal environment effects of growing-finishing swine. I. Growth, feed intake and heat production. Transactions of the American Society of Agricultural Engineers 30:1772–1775.

    Google Scholar 

  • Nienaber, J. A., and G. LeRoy Hahn. 1984. Effects of water flow restriction and environmental factors on performance of nursery-age pigs. J. Anim. Sci. 59:1423–1429.

    PubMed  CAS  Google Scholar 

  • Noblet, J., J. Y. Dourmad, M. Etienne, and J. Le Dividich. 1997. Energy metabolism in pregnant sows and newborn pigs. J. Anim. Sci. 75:2708–2714.

    PubMed  CAS  Google Scholar 

  • Noblet, J., J. Y. Dourmad, J. Le Dividich, and S. Dubois. 1989. Effect of ambient temperature and addition of straw or alfalfa in the diet on energy metabolism in pregnant sows. Livest. Prod. Sci. 21:309–324.

    Article  Google Scholar 

  • Noblet, J., and M. Etienne. 1987. Metabolic utilization of energy and maintenance requirements in lactating sows. J. Anim. Sci. 64:774–781.

    PubMed  CAS  Google Scholar 

  • Noblet, J., H. Fortune, X. S. Shi, and S. Dubois. 1994a. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci. 72:344–354.

    PubMed  CAS  Google Scholar 

  • Noblet, J., C. Karege, and S. Dubois. 1994b. Prise en compte de la variabilite de la composition corporelle pour la prévision du besoin énergetique et de l’efficacité alimentaire chez le porc en croissance. Journées de la Recherche Porcine en France 26:267–276.

    Google Scholar 

  • Noblet, J., C. Karege, S. Dubois, and J. van Milgen. 1999. Metabolic utilization of energy and maintenance requirements in growing pigs: effects of sex and genotype. J. Anim. Sci. 77:1208–1216.

    PubMed  CAS  Google Scholar 

  • Noblet, J., and J. Le Dividich. 1981. Energy Metabolism of the Newborn Pig during the First 24 h of Life. Neonatology 40:175–182.

    Article  CAS  Google Scholar 

  • Noblet, J., J. Le Dividich, and T. Bikawa. 1985. Interaction between energy level in the diet and environmental temperature on the utilization of energy in growing pigs. J. Anim. Sci. 61:452–459.

    PubMed  CAS  Google Scholar 

  • Noblet, J., J. Le Dividich, and J. Van Milgen. 2001. Thermal environment and swine nutrition. p 26 in Swine Nutrition. A. J. Lewis and L. L. Southern, eds. CRC Press, Boca Raton London New York Washington, D.C., USA.

    Google Scholar 

  • Noblet, J., and G. Le Goff. 2001. Effect of dietary fibre on the energy value of feeds for pigs. Anim.Feed.Sci. Tech. 90:35–52.

    Article  CAS  Google Scholar 

  • Omtvedt, I. T., R. E. Nelson, R. L. Edwards, D. F. Stephens, and E. J. Turman. 1971. Influence of heat stress during early, mid and late pregnancy of gilt. J. Anim. Sci. 32:312.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J. E., S. G. Cornelius, R. L. Moser, T. R. Heeg, H. E. Hanke, K. P. Miller, and C. D. Hagen. 1986. Effects of oral doses of corn oil and other factors on preweaning survival and growth of piglets. J. Anim. Sci. 62:601–612.

    PubMed  CAS  Google Scholar 

  • Pluske, J. R., I. H. Williams, F. X. Aherne, and M. A. Varley. 1995. Nutrition of the neonatal pig The Neonatal Pig, Development and Survival. p 187–235. CAB international, Walligford, UK.

    Google Scholar 

  • Prunier, A., H. Quesnel, M. Messias de Bragança, and A. Y. Kermabon. 1996. Environmental and seasonal influences on the return-to-oestrus after weaning in primiparous sows: a review. Livest. Prod. Sci. 45:103–110.

    Article  Google Scholar 

  • Prunier, A., N. M. Soede, H. Quesnel, B. Kemp, J. R. Pluske, J. Le Dividich, and M. W. A. Verstegen. 2003. Productivity and longevity of weaned sows Weaning the pig. Concepts and consequences. p 385–419. Wageningen Academic Publishers, Wageningen, the Netherlands.

    Google Scholar 

  • Quiniou, N., P. Massabie, and R. Granier. 2000a. Diurnally variation of ambient temperature around 24 or 28 °C: Influence on performance and feeding behavior of growing pigs, Des Moines, Iowa, USA. p 232–239.

    Google Scholar 

  • Quiniou, N., D. Gaudré, S. Rapp, and D. Guillou. 2000b. Influence de la temperature ambiante et de la concentration en nutriments de l’aliment sur les performances de lactation de la truie primipare. Journee des Recherches Porcines en France 32:275–282.

    Google Scholar 

  • Quiniou, N., and J. Noblet. 1999. Influence of high ambient temperatures on performance of multiparous lactating sows. J. Anim. Sci. 77:2124–2134.

    PubMed  CAS  Google Scholar 

  • Renaudeau, D. 2008. Nutrition of the lactating sows in hot conditions 3rd CLANA congress. Colegio Latinamericano de Nutricion Animal, Cancun, Q. Roo, Mexico

    Google Scholar 

  • Renaudeau, D., C. Anais, L. Tel, and J. L. Gourdine. 2010. Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function. J. Anim Sci. 88:3715–3724.

    Article  PubMed  CAS  Google Scholar 

  • Renaudeau, D., Collin, A., Yahav, S. de Basilio, V., Gourdine, J.L. and R.J. Collierl. 2011a. Adaptation to tropical climate and research strategies to alleviate heat stress in livestock production: a review. Animal (doi:10.1017/S1751731111002448).

  • Renaudeau, D., M. Giorgi, F. Silou, and J. L. Weisbecker. 2006. Effect of breed (lean or fat pigs) and sex on performance and feeding behaviour of group housed growing pigs in a tropical climate. Asian-Australas. J. Anim. Sci. 19:593–601.

    Google Scholar 

  • Renaudeau, D., J. L. Gourdine, B. A. N. Silva, and J. Noblet. 2008. Nutritional routes to attenuate heat stress in pigs. In: Livestock and Global Climate Change, Hammamet, Tunisia. p 134–138.

    Google Scholar 

  • Renaudeau, D., J. L. Gourdine, and N. R. St-Pierre. 2011b. A meta-analysis of the effect of high ambient temperature on growing-finishing pigs. J. Anim. Sci. 89:2220–2230.

    Article  PubMed  CAS  Google Scholar 

  • Renaudeau, D., E. Huc, and J. Noblet. 2007. Acclimation to high ambient temperature in Large White and Caribbean Creole growing pigs. J. Anim. Sci. 85:779–790.

    Article  PubMed  CAS  Google Scholar 

  • Renaudeau, D., J. Noblet, and J. Y. Dourmad. 2003a. Effect of ambient temperature on mammary gland metabolism in lactating sows. J. Anim. Sci. 81:217–231.

    PubMed  CAS  Google Scholar 

  • Renaudeau, D., N. Quiniou, S. Dubois, and J. Noblet. 2002. Effect of high ambient temperature and dietary protein level on feeding behaviour of multiparous lactating sows. Anim. Res. 51:227–243.

    Article  CAS  Google Scholar 

  • Renaudeau, D., and J. Noblet. 2001. Effects of exposure to high ambient temperature and dietary protein level on sow milk production and performance of piglets. J. Anim. Sci. 79:1540–1548.

    PubMed  CAS  Google Scholar 

  • Renaudeau, D., N. Quiniou, and J. Noblet. 2001. Effects of exposure to high ambient temperature and dietary protein level on performance of multiparous lactating sows. J. Anim. Sci. 79:1240–1249.

    PubMed  CAS  Google Scholar 

  • Renaudeau, D., J. L. Weisbecker, and J. Noblet. 2003b. Effect of season and dietary fibre on feeding behaviour of lactating sows in a tropical climate. Anim. Sci. 77:429–437.

    Google Scholar 

  • Rinaldo, D. 1989. Influence de la température ambiante sur le métabolisme énergétique et tissulaire et le besoin en lysine du porc en croissance. Mise en évidence de l’intérêt d’une température élevée. PhD, Université de Rennes I.

    Google Scholar 

  • Rinaldo, D., and J. le Dividich. 1991. Assessment of optimal temperature for performance and chemical body composition of growing pigs.Livest. Prod. Sci. 29:61–75.

    Article  Google Scholar 

  • Rinaldo, D., and J. Le Dividich. 1991. Influence de la témperature ambiante sur les performances de croissance du porc. Prod. Anim. (Paris) 4:57–65.

    Google Scholar 

  • Schoenherr, W. D., T. S. Stahly, and G. L. Cromwell. 1989. The effects of dietary fat or fiber addition on yield and composition of milk from sows housed in a warm or hot environment. J. Anim. Sci. 67:482–495.

    PubMed  CAS  Google Scholar 

  • Shelton, D. P., and M. C. Brumm. 1984. Response of nursery pigs to reduced nocturnal temperatures. ASAE paper N°84-4021 St. Joseph, MI.

    Google Scholar 

  • Silva, B. A. N., J. Noblet, J. L. Donzele, R. F. M. Oliveira, Y. Primot, J. L. Gourdine, and D. Renaudeau. 2009a. Effects of dietary protein level and amino acid supplementation on performance of mixed-parity lactating sows in a tropical humid climate. J. Anim Sci. 87:4003–4012.

    Article  PubMed  CAS  Google Scholar 

  • Silva, B. A. N., A. I. G. Oliveira, J. L. Donzele, H. C. Fernandez, M. L. T. Abreu, J. Noblet, and C. G. V. Nunes. 2006. Effect of floor cooling on performance of lactating sows during summer. Livest. Prod. Sci. 105:176–184.

    Article  Google Scholar 

  • Silva, B. A. N., R. F. M. Oliveira, J. L. Donzele, H. C. Fernandes, A. L. Lima, D. Renaudeau, and J. Noblet. 2009b. Effect of floor cooling and dietary amino acids content on performance and behaviour of lactating primiparous sows during summer. Livestock Science 120:25–34.

    Article  Google Scholar 

  • Spencer, J. D., R. D. Boyd, R. Cabrera, and G. L. Allee. 2003. Early weaning to reduce tissue mobilization in lactating sows and milk supplementation to enhance pig weaning weight during extrme heat stress. J. Anim. Sci. 81:2041–2052.

    PubMed  CAS  Google Scholar 

  • Spencer, J. D., A. M. Gaines, G. Rentfrow, W. Cast, J. L. Usry, and G. L. Allee. 2001. Supplemental fat and/or reduced dietary protein crude protein effects on growth performance, carcass characteristics, and meat quality of late finishing barrows reared in controlled hot environment. J. Anim. Sci. 79:66.

    Google Scholar 

  • Stahly, T. S., and G. L. Cromwell. 1979. Effect of environmental temperature and dietary fat supplementation on the performance and carcass characteristics of growing and finishing swine. J. Anim. Sci. 49:1478–1488.

    Google Scholar 

  • Stahly, T. S., G. L. Cromwell, and J. R. Overfield. 1981. Interactive effects of season of year and dietary fat supplementation, lysine source and lysine level on the performance of swine. J. Anim. Sci. 53:1269–1277.

    CAS  Google Scholar 

  • Stansbury, W. F., J. J. McGlone, and L. F. Tribble. 1987. Effects of season, floor type, air temperature and snout cooler on sow and litter performance. J. Anim. Sci. 65:1507–1513.

    Google Scholar 

  • Suriyasomboon, A., N. Lundeheim, A. Kunavongkrit, and S. Einarsson. 2004. Effect of temperature and humidity on sperm production in Duroc boars under different housing systems in Thailand. Livest. Prod. Sci. 89:19–31.

    Article  Google Scholar 

  • Tokach, M. D., B. Goodband, J. L. Nelssen, and L. J. Kats. 1992. Influence of the weaning weight and growth during the first week post-weaning on subsequent pig performance. Kansas State University Day, report of progress, No. 667.

    Google Scholar 

  • Turner, L. W., H. J. Monegue, R. S. Gates, and M. D. Lindemann. 1997. Fan, sprinkler, and sprinkler plus fan systems for cooling growing-finishing swine. In: ASAE Annual International Meeting, Minneapolis, Minnesota, USA, 10–14 August, 1997. p 13 pp.

    Google Scholar 

  • Van der Hel, W., M. W. A. Verstegen, W. Baltussen, and H. Brandsma. 1984. The effect of ambiant temperature on diurnal rhythm in heat production and activity in pigs kept in groups. Int. J. Biometeorol. 28:303–315.

    Article  Google Scholar 

  • Van Milgen, J., N. Quiniou, and J. Noblet. 2000. Modelling the relation between energy intake and protein and lipid deposition in growing pigs. Anim. Sci. 71:119–130.

    Google Scholar 

  • Van Wagenberg, A. V., C. M. C. Van de Peet-Schwering, G. P. Binnendijk, and P. J. P. W. Claessen. 2006. Effect of floor cooling on farrowing sow and litter performance: field experiment under Dutch conditions. Transactions of the ASABE 49:1521–1527.

    Google Scholar 

  • Vanderhaeghe, C., J. Dewulf, S. Ribbens, A. de Kruif, and D. Maes. 2010. A cross-sectional study to collect risk factors associated with stillbirths in pig herds. Anim. Reprod. Sci. 118:62–68.

    Article  PubMed  CAS  Google Scholar 

  • Varley, M. A. 1995. Introduction. The neonatal pig, development and survival. p 1–16. CAB international, Wallingford, UK.

    Google Scholar 

  • Verhagen, J. M. F., R. Geers, and M. W. A. Verstegen. 1988. Time taken for growing pigs to acclimate to change in ambient temperature. Neth. J. Agric. Sci. 36:1–10.

    Google Scholar 

  • West, J. W. 2003. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86:2131–2144.

    Article  PubMed  CAS  Google Scholar 

  • Wettmann, R. P., M. E. Wells, I. T. Omtvedt, C. E. Pope, and E. J. Turman. 1976. Influence of elevated ambient temperature on reproductive performance of boars. J. Anim. Sci. 42:664–669.

    Google Scholar 

  • Wildt, D., G. Riegle, and W. Dukelow. 1975. Physiological temperature response and embryonic mortality in stressed swine. American Journal of Physiology 229:1471–1475.

    PubMed  CAS  Google Scholar 

  • Yang, P. G., W. D. Fang, I. T. Yu, S. H. Wang, C. Y. Tsay, W. B. Chung, and M. Rea-Sen Liu. 1996. Pathological studies of abortion, stillbirth and neonatal deaths on a swine herd in Taiwan. Journal of the Chinese Society of Veterinary 22:222–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John F. Patience

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Renaudeau, D., Gilbert, H., Noblet, J. (2012). Effect of climatic environment on feed efficiency in swine. In: Patience, J.F. (eds) Feed efficiency in swine. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-756-1_9

Download citation

Publish with us

Policies and ethics