Skip to main content

Pig breeding for improved feed efficiency

  • Chapter
Feed efficiency in swine

Abstract

The feed efficiency of growing pigs has been a matter of serious commercial and scientific interest since at least 1970, but early recording technology made it difficult to produce accurate feed intake data at the individual level. Since electronic feeders were introduced, the pig breeding industry has been making good genetic improvement in feed conversion ratio (FCR) but this has been mainly due to genetic improvement of growth and body composition traits. More than one third of the variation in feed intake is due to processes that are independent of growth and body composition, mainly body maintenance processes such as basal metabolism, protein turnover, thermoregulation, physical activity, immune and other coping functions, nutrient digestion and absorption efficiency. We give an example of how genetic variation in basal metabolism may be generated by electron leakage through the mitochondrial membrane. This considerable (and up to now insufficiently exploited) variation can be accessed through the trait residual feed intake (RFI: feed intake, statistically adjusted for growth and body composition). In routine breeding value estimation systems, this is catered for by including feed intake (rather than FCR) in the breeding goal and in the multi-trait BLUP evaluation. We give examples of how selection for growth and body composition traits and RFI leads to genetic change in feed intake and from there in FCR, in four real-life breeding populations, and show that genetic improvement of FCR is a function of genetic improvement of those underlying traits. Improving the efficiency of any system often leads to a higher sensitivity to extraneous challenges; this also holds for the growing pig. An important element of a breeding program that focuses on genetic improvement of feed efficiency is therefore the proper monitoring and control of side effects in other traits, most notably robustness and quality traits. And because many of the body maintenance processes are strongly influenced by the production environment, the data used for breeding value estimation of RFI should be recorded in commercial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergsma, R., E. Kanis, E. F. Knol, and P. Bijma. 2008. The contribution of social effects to heritable variation in finishing traits of domestic pigs (Sus scrofa). Genetics 178:1559–1570.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, C., and M. H. Fahmy. 1970. Effect of selection on feed utilization and carcass score in swine. Can. J. Anim. Sci. 50:575–584.

    Article  Google Scholar 

  • Biswas, D. K., A. B. Chapman, N. L. First, and H. L. Self. 1971. Intrapopulation versus reciprocal recurrent selection in swine. J. Anim. Sci. 32:840–848.

    PubMed  CAS  Google Scholar 

  • Bottje, W., Z. X. Tang, M. Iqbal, D. Cawthon, R. Okimoto, T. Wing, and M. Cooper. 2002. Association of mitochondrial function with feed efficiency within a single genetic line of male broilers. Poult. Sci. 81:546–555.

    PubMed  CAS  Google Scholar 

  • Bottje, W. G., and G. E. Carstens. 2009. Association of mitochondrial function and feed efficiency in poultry and livestock species. J. Anim. Sci. 87:E48-E63.

    Article  PubMed  CAS  Google Scholar 

  • Bottje, W., M. D. Brand, C. Ojano-Dirain, K. Lassiter, M. Toyomizu, and T. Wing. 2009. Mitochondrial proton leak kinetics and relationship with feed efficiency within a single genetic line of male broilers. Poult. Sci. 88:1683–1693.

    Article  PubMed  CAS  Google Scholar 

  • Casey, D. S., H. S. Stern, and J. C. M. Dekkers. 2005. Identification of errors and factors associated errors in data from electronic swine feeders. J. Anim. Sci. 83:969–982.

    PubMed  CAS  Google Scholar 

  • Casey, D. S., and L. Wang. 2006. Methods of editing errors in data from electronic swine feeders impact heritability estimates of average daily feed intake. J. Anim. Sci. 82(Suppl. 1):120 (Abstr.).

    Google Scholar 

  • Casey, D., M. Perez, D. McLaren, and T. Short. 2006. Crossbred breeding values: selecting for commercial performance in pigs. Communication 06–26 in Proc. 8th World Congr. Genet. Appl. Livest. Prod., Belo Horizonte, Brazil.

    Google Scholar 

  • Dekkers, J. C. M., and H. Gilbert. 2010. Genetic and biological aspect of residual feed intake in pigs. Communication 0287 in Proc. 9th World Congr. Genet. Appl. Livest. Prod., Leipzig, Germany.

    Google Scholar 

  • Dittrich, M., S. Hayashi, and K. Schulten. 2003. On the mechanism of ATP hydrolysis in F1-ATPase. Biophys. J. 85:2253–2266.

    Article  PubMed  CAS  Google Scholar 

  • Eissen, J. J., E. Kanis, and J. W. M. Merks. 1998. Algorithms for identifying errors in individual feed intake data of growing pigs in group housing. Appl. Eng. Agr. 14:667–673.

    Google Scholar 

  • Eissen, J. J., A. G. de Haan, and E. Kanis. 1999. Effect of missing data on the estimate of average daily feed intake of growing pigs. J. Anim. Sci. 77:1372–1378.

    PubMed  CAS  Google Scholar 

  • Fan, B., S. Lkhagvadorj, W. Cai, J. Young, R. M. Smith, J. C. M. Dekkers, E. Huff-Lonergan, S. M. Lonergan, and M. F. Rothschild. 2010. Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci. 4:645–650.

    Article  Google Scholar 

  • Faure, J., L. Lefaucheur, N. Bonhomme, L. Brossard, H. Gilbert, and B. Lebret. 2011. Pork quality differences between lines divergently selected for residual feed intake. Communication P012 in Proc. Int. Congr. Meat Sci. Tech., Ghent, Belgium.

    Google Scholar 

  • Gilbert, H., S. al Aïn, J. P. Bidanel, H. Lagant, Y. Billon, P. Guillouet, J. Noblet, and P. Sellier. 2009. Relations génétiques entre efficacité alimentaire et cinétiques de croissance et d’ingestion chez le porc Large White. Communication G01 in Proc. 41st Journées de la Recherche Porcine, Paris, France.

    Google Scholar 

  • Gilbert, H., J. P. Bidanel, Y. Billon, H. Lagant, P. Guillouet, P. Sellier, J. Noblet, and S. Hermesch. 2012. Correlated responses in sow appetite, residual feed intake, body composition and reproduction after divergent selection for residual feed intake in the growing pig. J. Anim. Sci. 90:1097–1108.

    Article  PubMed  CAS  Google Scholar 

  • Gunsett, F. C. 1984. Linear index selection to improve traits defined as ratios. J. Anim. Sci. 59:1185–1193.

    Google Scholar 

  • Gunsett, F. C. 1987. Merit of utilizing the heritability of a ratio to predict the genetic change of a ratio. J. Anim. Sci. 65:936–942.

    Google Scholar 

  • Jastroch, M., A. S. Divakaruni, S. Mookerjee, J. R. Treberg, and M. D. Brand. 2010. Mitochondrial proton and electron leaks. Essays Biochem. 47:53–67.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, B. W., J. H. van der Werf, and T. H. Meuwissen. 1993. Genetic and statistical properties of residual feed intake. J. Anim. Sci. 71:3239–3250.

    PubMed  CAS  Google Scholar 

  • Knap P. W. 2009a. Voluntary feed intake and pig breeding. Pages 11–33 in Voluntary feed intake in pigs. D. Torrallardona and E. Roura, eds. Wageningen Academic Publishers, Wageningen, the Netherlands.

    Google Scholar 

  • Knap P. W. 2009b. Allocation of resources to maintenance. Pages 110–129 in Resource allocation theory applied to farm animal production. W.M. Rauw, ed. CAB International, Wallingford, UK.

    Google Scholar 

  • Kolath, W. H., M. S. Kerley, J. W. Golden, and D. H. Keisler. 2006. The relationship between mitochondrial function and residual feed intake in Angus steers. J. Anim. Sci. 84:861–865.

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur, L., B. Lebret, P. Ecolan, I. Louveau, M. Damon, A. Prunier, Y. Billon, P. Sellier, and H. Gilbert. 2011. Muscle characteristics and meat quality traits are affected by divergent selection on residual feed intake in pigs. J. Anim. Sci. 89:996–1010.

    Article  PubMed  CAS  Google Scholar 

  • Lehninger, A. L., D. L. Nelson, and M. M. Cox. 1993. Principles of biochemistry. 2nd ed. Worth Publishers, New York NY, USA.

    Google Scholar 

  • Luiting, P., J. H. J. van der Werf, and T. H. E. Meuwissen. 1992. Proof of equivalence of selection indices containing traits adjusted for each other. Page 146 in Proc. 43rd Ann. Meet. Eur. Assoc. Anim. Prod., Madrid, Spain.

    Google Scholar 

  • McDonald, J. M., J. J. Ramsey, J. L. Miner, and M. K. Nielsen. 2009. Differences in mitochondrial efficiency between lines of mice divergently selected for heat loss. J. Anim. Sci. 87:3105–3113.

    Article  PubMed  CAS  Google Scholar 

  • Meunier-Salaün, M. C., C. Guèrin, Y. Billon, A. Priet, P. Sellier, and H. Gilbert. 2011. Sélection divergente sur la consommation moyenne journalière résiduelle chez le porc en croissance: caractéristiques phénotypiques de l’activité physique et comportementale des porcs en fonction de la lignée et du sexe. Communication BE02 in Proc. 43rd Journees de la Recherche Porcine, Paris, France.

    Google Scholar 

  • Newman S., L. Wang, J. Anderson, and D. Casey. 2010. Utilizing crossbred records to increase accuracy of breeding values in pigs. Communication 0632 in Proc. 9th World Congr. Genet. Appl. Livest. Prod., Leipzig, Germany.

    Google Scholar 

  • Ojano-Dirain, C. P., M. Iqbal, D. Cawthon, S. Swonger, T. Wing, M. Cooper, and W. Bottje. 2004. Determination of mitochondrial function and site-specific defects in electron transport in duodenal mitochondria in broilers with low and high feed efficiency. Poult. Sci. 83:1394–1403.

    PubMed  CAS  Google Scholar 

  • Sadler, L. J., A. K. Johnson, S. M. Lonergan, D. Nettleton, and J. C. M. Dekkers. 2011. The effect of selection for residual feed intake on general behavioral activity and the occurrence of lesions in Yorkshire gilts. J. Anim. Sci. 89:258–266.

    Article  PubMed  CAS  Google Scholar 

  • Sellers, H. I. 1981. Selection for feed efficiency. Pages 55–60 in Proc. Conf. Nat. Swine Impr. Fed., Des Moines IA, USA.

    Google Scholar 

  • Smith, R. M., N. K. Gabler, J. M. Young, W. Cai, N. J. Boddicker, M. J. Anderson, E. Huff-Lonergan, J. C. Dekkers, and S. M. Lonergan. 2011. Effects of selection for decreased residual feed intake on composition and quality of fresh pork. J. Anim. Sci. 89:192–200.

    Article  PubMed  CAS  Google Scholar 

  • Wei, M., and J. H. J van der Werf. 1994. Maximizing genetic response in crossbreds using both purebred and crossbred information. Anim. Prod. 59:401–413.

    Article  Google Scholar 

  • Young, J.M. and J.C.M. Dekkers, 2012. The genetic and biological basis of residual feed intake as a measure of feed efficiency. Pages 153–166 in Feed efficiency in swine. J.F. Patience, ed. Wageningen Academic Publishers, Wageningen, the Netherlands.

    Chapter  Google Scholar 

  • Young, J. M., R. Bergsma, E. F. Knol, J. F. Patience, and J. C. M. Dekkers. 2010. Effect of selection for residual feed intake on sow reproductive performance and lactation efficiency. Communication 0223 in Proc. 9th World Congr. Genet. Appl. Livest. Prod., Leipzig, Germany.

    Google Scholar 

  • Young J. M., W. Cai, and J. C. M. Dekkers. 2011. Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in Yorkshire swine. J. Anim. Sci. 89:639–647.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Knap .

Editor information

John F. Patience

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Knap, P.W., Wang, L. (2012). Pig breeding for improved feed efficiency. In: Patience, J.F. (eds) Feed efficiency in swine. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-756-1_8

Download citation

Publish with us

Policies and ethics