Skip to main content

Fueling the immune response: what’s the cost?

  • Chapter
Feed efficiency in swine

Abstract

Pigs kept in environments where they are exposed to a high number of pathogenic microbes have reduced feed intake and growth, even when no obvious acute illness exists. This chronic drain on production is called immunological stress. Sentinel immune cells (e.g. macrophages) ‘sense’ the diverse microbial environment by detecting pathogen-associated molecular patterns (PAMPs), which are molecules associated with groups of pathogens. The immune sentinels detect PAMPs mainly with Toll-like receptors (TLRs). Stimulation of macrophages through their TLRs leads to the synthesis and secretion of pro-inflammatory cytokines and prostaglandins, thereby initiating the inflammatory response that recruits both soluble immune molecules and circulating immune cells. Pro-inflammatory cytokines enable the immune system to communicate with other disparate physiological systems. They rearrange the animal’s metabolic priorities, resulting in re-partitioning of nutrients away from productive processes towards responses that support the immune system. Thus, the immune system, through detection of PAMPs and production of pro-inflammatory cytokines, is the critical chain link connecting the pathogenic environment to productivity. Estimates suggest that at maintenance a healthy animal uses about 0.5-2% of the body’s lysine for leukocytes, antibodies, and acute phase proteins. When mounting a robust response to an infectious pathogen the immune response is estimated to account for about 9% of the body’s lysine. Thus, the cost of immunological stress, in terms of lysine utilization, must lie somewhere on the gradient beginning at 2% (maintenance) and ending at 9% (robust immune response). Providing additional lysine in the diet does not alleviate the reduced growth caused by immunological stress because the capacity for protein accretion is inhibited. Thus, minimizing exposure to pathogenic microbes with sound environmental management practices must remain a high priority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulou, L., A. C. Holt, R. Medzhitov, and R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738.

    Article  PubMed  CAS  Google Scholar 

  • Broussard, S., J. H. Zhou, H. D. Venters, R. M. Bluthe, R. W. Johnson, R. Dantzer, and K. Kelley. 2001. At the interface of environment-immune interactions: cytokines and growth factor receptors. J. Anim. Sci. 79:E268-284.

    Google Scholar 

  • Burger, W., E. M. Fennert, M. Pohle, and H. Wesemeier. 1992. C-reactive protein--a characteristic feature of health control in swine. Zentralbl Veterinarmed A. 39:635–638.

    PubMed  CAS  Google Scholar 

  • Cavanagh, D. 1997. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Archives of Virology 142:629–633.

    PubMed  CAS  Google Scholar 

  • Che, T. M., R. W. Johnson, K. W. Kelley, K. A. Dawson, C. A. Moran, and J. E. Pettigrew. 2012. Effects of mannan oligosaccharide on cytokine secretions by porcine alveolar macrophages and serum cytokine concentrations in nursery pigs. J. Anim. Sci. 90: 657–668.

    Article  PubMed  CAS  Google Scholar 

  • Che, T. M., R. W. Johnson, K. W. Kelley, W. G. Van Alstine, K. A. Dawson, C. A. Moran, and J. E. Pettigrew. 2011a. Mannan oligosaccharide improves immune responses and growth efficiency of nursery pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J. Anim. Sci. 89:2592–2602.

    Article  PubMed  CAS  Google Scholar 

  • Che, T. M., R. W. Johnson, K. W. Kelley, W. G. Van Alstine, K. A. Dawson, C. A. Moran, and J. E. Pettigrew. 2011b. Mannan oligosaccharide modulates gene expression profile in pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J. Anim. Sci. 89:3016–3029.

    Article  PubMed  CAS  Google Scholar 

  • Coates, M. E., R. Fuller, G. F. Harrison, M. Lev, and S. F. Suffolk. 1963. A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br. J. Nutr. 17:141–150.

    Article  PubMed  CAS  Google Scholar 

  • Cromwell, G.L. 2002. Why and how antibiotics are used in swine production. Animal Biotechnology 13:7–27.

    Article  PubMed  Google Scholar 

  • Dilger, R. N. and R. W. Johnson. 2010. Behavioral assessment of cognitive function using a translational neonatal piglet model. Brain Behav. Immun. 24:1156–1165.

    Article  PubMed  CAS  Google Scholar 

  • Duan, X., H. J. Nauwynck, and M. B. Pensaert. 1997. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Vet. Microbiol. 56:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Eckersall, P. D. and R. Bell. 2010. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 185:23–27.

    Article  PubMed  CAS  Google Scholar 

  • Escobar, J, T. L. Toepfer-Berg, J. Chen, W. G. Van Alstine, J. M. Campbell and R. W. Johnson. 2006. Supplementing drinking water with Solutein did not mitigate acute morbidity effects of porcine reproductive and respiratory syndrome virus in nursery pigs. J. Anim. Sci. 84:2101–2109.

    Article  PubMed  CAS  Google Scholar 

  • Escobar, J., W. G. Van Alstine, D. H. Baker, and R. W. Johnson. 2004. Decreased protein accretion in pigs with viral and bacterial pneumonia is associated with increased myostatin expression in muscle. J. Nutr. 134:3047–3053.

    PubMed  CAS  Google Scholar 

  • Escobar, J., W. G. Van Alstine, D. H. Baker, and R. W. Johnson. 2007. Behavior of pigs with viral and bacterial pneumonia. J. Appl. Anim. Behav. 105:42–50.

    Article  Google Scholar 

  • Galloway, S. M. and C. R. Raetz. 1990. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. J. Biol. Chem. 265:6394–6402.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Cadavid, N. F., W. E. Taylor, K. Yarasheski, I. Sinha-Hikim, K. Ma, S. Ezzat, R. Shen, R. Lalani, S. Asa, M. Mamita, G. Nair, S. Arver, and S. Bhasin. 1998. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc. Natl. Acad. Sci. U.S.A. 95:14938–14943.

    Article  PubMed  CAS  Google Scholar 

  • Grobet, L., L. J. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hanset, and M. Georges. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17:71–74.

    Article  PubMed  CAS  Google Scholar 

  • Hall, W. F., T. E. Eurell, R. D. Hansen, and L. G. Herr. 1992. Serum haptoglobin concentration in swine naturally or experimentally infected with Actinobacillus pleuropneumoniae. J. Am. Vet. Med. Assoc. 201:1730–1733.

    PubMed  CAS  Google Scholar 

  • Harris, D. L. and T. J. L. Alexander. 1999. Methods of disease control. Pages 1077–1110 in Diseases of Swine. B. E. Straw, S. D’Allaire, W. L. Mengeling, and D. J. Taylor, eds. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Hill, D. C., H. D. Branion, S. J. Slinger, and G. W. Anderson. 1952. Influence of environment on the growth response of chicks to penicillin. Poult. Sci. 32:464–466.

    Google Scholar 

  • Itoh, H., K. Tamura, M. Izumi, Y. Motoi, K. Kidoguchi, and Y. Funayama. 1993. The influence of age and health status on serum alpha-1 acid glycoprotein levels of conventional and pathogen-free pigs. Can. J. Vet. Res. 57:74–78.

    PubMed  CAS  Google Scholar 

  • Johnson, R. W. 1997. Inhibition of growth by pro-inflammatory cytokines: an integrated view. J. Anim. Sci. 75:1244–1255.

    PubMed  CAS  Google Scholar 

  • Johnson, R. W. and E. von Borell. 1994. Lipopolysaccharide-induced sickness behavior in pigs is inhibited by pretreatment with indomethacin. J. Anim. Sci. 72:309–314.

    PubMed  CAS  Google Scholar 

  • Kambadur, R., M. Sharma, T. P. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in doublemuscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910–916.

    PubMed  CAS  Google Scholar 

  • Kirk, S., J. Oldham, R. Kambadur, M. Sharma, P. Dobbie, and J. Bass. 2000. Myostatin regulation during skeletal muscle regeneration. J. Cell. Physiol. 184:356–363.

    Article  PubMed  CAS  Google Scholar 

  • Klasing, K. C. 2007. Nutrition and the immune system. Br. Poult. Sci. 48:525–537.

    Article  PubMed  CAS  Google Scholar 

  • Klasing, K. C. and D. M. Barnes. 1988. Decreased amino acid requirements of growing chicks due to immunologic stress. J. Nutr. 118:1158–1164.

    PubMed  CAS  Google Scholar 

  • Long, D. B., K. Y. Zhang, D. W. Chen, X. M. Ding, and B. Yu. 2009. Effects of active immunization against myostatin on carcass quality and expression of the myostatin gene in pigs. Anim. Sci. J. 80:585–590.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. M., L. Alexopoulou, A. Sato, M. Karow, N. C. Adams, N. W. Gale, A. Iwasaki, and R. A. Flavell. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. U.S.A. 101:5598–5603.

    Article  PubMed  CAS  Google Scholar 

  • Luo, R., S. Xiao, Y. Jiang, H. Jin, D. Wang, M. Liu, H. Chen, and L. Fang. 2008. Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-beta production by interfering with the RIG-I signaling pathway. Mol. Immunol. 45:2839–2846.

    Article  PubMed  CAS  Google Scholar 

  • McPherron, A. C., A. M. Lawler, and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Miguel, J. C., J. Chen, W. G. Van Alstine, and R. W. Johnson. 2010. Expression of inflammatory cytokines and Toll-like receptors in the brain and respiratory tract of pigs infected with porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunopathol. 135:314–319.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. C., K. M. Lager, and M. E. Kehrli, Jr. 2009. Role of Toll-like receptors in activation of porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus. Clin. Vaccine Immunol. 16:360–365.

    Article  PubMed  CAS  Google Scholar 

  • Moresco, E. M., D. LaVine and B. Beutler. 2011. Toll-like receptors. Curr. Biol. 21:R488-493.

    Article  PubMed  CAS  Google Scholar 

  • NRC. 1998. Nutrient requirements of swine. 10th ed. National Academy Press, Washington, D.C.

    Google Scholar 

  • Reeds, P. J., C. R. Fjeld, and F. Jahoor. 1994. Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J. Nutr. 124:906–910.

    PubMed  CAS  Google Scholar 

  • Roura, E., J. Homedes, and K. C. Klasing. 1992. Prevention of immunologic stress contributes to the growthpermitting ability of dietary antibiotics in chicks. J. Nutr. 122:2383–2390.

    PubMed  CAS  Google Scholar 

  • Sang, Y., C. R. Ross, R. R. Rowland, and F. Blecha. 2008. Toll-like receptor 3 activation decreases porcine arterivirus infection. Viral Immunol. 21:303–313.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, M., B. Langley, J. Bass, and R. Kambadur. 2001. Myostatin in muscle growth and repair. Exerc. Sport Sci. Rev. 29:155–158.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, G., G. Dallmann, G. Muller, L. Patthy, M. Soller. and L. Varga. 1998. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm. Genome 9:671–672.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, O. and S. Akira. 2007. Signaling pathways activated by microorganisms. Curr. Opin. Cell Biol. 19:185–191.

    Article  PubMed  CAS  Google Scholar 

  • Toepfer-Berg, T. L., J. Escobar, W. G. Van Alstine, D. H. Baker, J. Salak-Johnson, and R. W. Johnson. 2004. Vitamin E supplementation does not mitigate the acute morbidity effects of porcine reproductive and respiratory syndrome virus in nursery pigs. J. Anim. Sci. 82:1942–1951.

    PubMed  CAS  Google Scholar 

  • Uenishi, H. and H. Shinkai. 2009. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol. 33:353–361.

    Article  PubMed  CAS  Google Scholar 

  • Webel, D. M., B. N. Finck, D. H. Baker, and R. W. Johnson. 1997. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. J. Anim. Sci. 75:1514–1520.

    PubMed  CAS  Google Scholar 

  • Webel, D. M., R. W. Johnson, and D. H. Baker. 1998a. Lipopolysaccharide-induced reductions in food intake do not decrease the efficiency of lysine and threonine utilization for protein accretion in chickens. J. Nutr. 128:1760–1766.

    PubMed  CAS  Google Scholar 

  • Webel, D. M., D. C. Mahan, R. W. Johnson, and D. H. Baker. 1998b. Pretreatment of young pigs with vitamin E attenuates the elevation in plasma interleukin-6 and cortisol caused by a challenge dose of lipopolysaccharide. J. Nutr. 128:1657–1660.

    PubMed  CAS  Google Scholar 

  • Williams, N. H., T. S. Stahly, and D. R. Zimmerman. 1997a. Effect of chronic immune system activation on body nitrogen retention, partial efficiency of lysine utilization, and lysine needs of pigs. J. Anim. Sci. 75:2472–2480.

    PubMed  CAS  Google Scholar 

  • Williams, N. H., T. S. Stahly, and D. R. Zimmerman. 1997b. Effect of chronic immune system activation on the rate, efficiency, and composition of growth and lysine needs of pigs fed from 6 to 27 kg. J. Anim. Sci. 75:2463–2471.

    PubMed  CAS  Google Scholar 

  • Williams, N. H., T. S. Stahly, and D. R. Zimmerman. 1997c. Effect of level of chronic immune system activation on the growth and dietary lysine needs of pigs fed from 6 to 112 kg. J. Anim. Sci. 75:2481–2496.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge two former mentors, Professors Stanley Curtis and David Baker, who passed away in 2010 and 2009, respectively. Dr. Curtis was instrumental in developing concepts about the relationship between the pathogenic environment and animal performance. Indeed, a portion of this chapter’s Introduction was prepared for what was to be a 2nd edition of Curtis’ classic textbook, ‘Environmental Aspects of Animal Management’. Unfortunately, the 2nd edition could not be brought to fruition. Dr. Baker introduced me to nutritional sciences when I a was young assistant professor and developed in me an appreciation for how nutrition and the immune system intersect. Several of our collaborative projects are discussed herein. Drs. Curtis and Baker were giants in the animal science community and both were passionate about efficient animal production. It is appropriate to acknowledge them here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Johnson .

Editor information

John F. Patience

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Johnson, R.W. (2012). Fueling the immune response: what’s the cost?. In: Patience, J.F. (eds) Feed efficiency in swine. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-756-1_10

Download citation

Publish with us

Policies and ethics