Skip to main content

Tick – Borrelia interactions: burden or benefit?

  • Chapter

Part of the book series: Ecology and control of vector-borne diseases ((ECVD,volume 3))

Abstract

A key factor in the success of parasites is the ability to move between hosts. Some parasites make use of an intermediate arthropod host to move between their primary hosts. Several examples exist where such parasites manipulate their intermediate host to enhance their transmission, but examples for ticks are scarce. In this chapter, we describe how Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is associated with changes in the behaviour, physiology and survival of Ixodes ticks. Such changes can lead to more effective host finding for the tick and better colonisation of new hosts by Borrelia. We discuss how these changes may lead to an increased transmission (risk) of Borrelia. A next-generation matrix approach is applied to model potential effects of increased tick survival on the basic reproduction number R 0 of Borrelia. Using this approach, we show that Borrelia-associated increased survival of ticks can have a profound effect on the circulation of spirochaetes, and hence on Lyme borreliosis risk. Future studies would ideally resolve the mechanisms behind the described changes, and establish experimentally whether Borrelia can enhance its circulation between hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alekseev AN, Jensen PM, Dubinina HV, Smirnova LA, Makrouchina NA and Zharkov SD (2000) Peculiarities of behaviour of taiga (Ixodes persulcatus) and sheep (Ixodes ricinus) ticks (Acarina: Ixodidae) determined by different methods. Folia Parasit 47: 147-153.

    CAS  Google Scholar 

  • Anderson JF and Magnarelli LA (2008) Biology of ticks. Dis Clin North Am 22: 195-215.

    Article  Google Scholar 

  • Barbour AG, Bunikis J, Travinsky B, Hoen AG, Diuk-Wasser MA, Fish D and Tsao JI (2009) Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg 81: 1120-1131.

    Article  PubMed  Google Scholar 

  • Chapman RF (1982) The insects, structure and function. Hodder and Stoughton, London, UK.

    Google Scholar 

  • Crippa M, Rais O and Gern L (2002) Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector-Borne Zoonot 2: 3-9.

    Article  Google Scholar 

  • Davis S and Bent SJ (2011) Loop analysis for pathogens: niche partitioning in the transmission graph for pathogens of the North American tick Ixodes scapularis. J Theor Biol 269: 96-103.

    Article  PubMed  Google Scholar 

  • De Silva AM and Fikrig E (1995) Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg 53: 397-404.

    PubMed  Google Scholar 

  • Diekmann O, Heesterbeek JA and Metz JA (1990) On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365-382.

    Article  PubMed  CAS  Google Scholar 

  • Dobson AP (1988) The population biology of parasite-induced changes in host behavior. Q Rev Biol 63: 139-165.

    Article  PubMed  CAS  Google Scholar 

  • Eisen L, Eisen RJ, Chang CC, Mun J and Lane RS (2004) Acarologic risk of exposure to Borrelia burgdorferi spirochaetes: long-term evaluations in north-western California, with implications for Lyme borreliosis risk-assessment models. Med Vet Ent 18: 38-49.

    Article  CAS  Google Scholar 

  • Faulde M and Robbins R (2008) Tick infestation risk and Borrelia burgdorferi s.l. infection-induced increase in host-finding efficacy of female Ixodes ricinus under natural conditions. Exp Appl Acarol 44: 137-145.

    Article  PubMed  Google Scholar 

  • Gassner F (2010) Tick tactics: interactions between habitat characteristics, hosts and microorganisms in relation to the biology of the sheep tick Ixodes ricinus. Dissertation, Wageningen University, Wageningen, the Netherlands.

    Google Scholar 

  • Gassner F, Van Vliet AJH, Burgers SLGE, Jacobs F, Verbaarschot P, Hovius EKE, Mulder S, Verhulst NO, Van Overbeek LS and Takken W (2011) Geographic and temporal variations in population dynamics of Ixodes ricinus and associated Borrelia infections in the Netherlands. Vector-Borne Zoonot 11: 523-532.

    Article  Google Scholar 

  • Gern L (2008) Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis: life in the wilds. Parasite 15: 244-247.

    Article  PubMed  CAS  Google Scholar 

  • Gern L and Rais O (1996) Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol 33: 189-192.

    PubMed  CAS  Google Scholar 

  • Gern L, Siegenthaler M, Hu CM, Leuba-Garcia S, Humair PF and Moret J (1994) Borrelia burgdorferi in rodents (Apodemus flavicollis and A. sylvaticus): duration and enhancement of infectivity for Ixodes ricinus ticks. Eur J Epidemiol 10: 75-80.

    Article  PubMed  CAS  Google Scholar 

  • Gray JS, Kirstein F, Robertson JN, Stein J and Kahl O (1999) Borrelia burgdorferi sensu lato in Ixodes ricinus ticks and rodents in a recreational park in south-western Ireland. Exp Appl Acarol 23: 717-729.

    Article  PubMed  CAS  Google Scholar 

  • Halos L, Mavris M, Vourc’h G, Maillard R, Barnouin J, Boulouis H-J and Vayssier-Taussat M (2006) Broad-range PCR-TGGE for the first-line detection of bacterial pathogen DNA in ticks. Vet res 37: 245-253.

    Article  PubMed  CAS  Google Scholar 

  • Hanincová K, Schäfer SM, Etti S, Sewell HS, Taragelová V, Ziak D, Labuda M and Kurtenbach K (2003a) Association of Borrelia afzelii with rodents in Europe. Parasitology 126: 11-20.

    Article  PubMed  Google Scholar 

  • Hanincová K, Taragelová V, Koci J, Schafer SM, Hails R, Ullmann AJ, Piesman J, Labuda M and Kurtenbach K (2003b) Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Env Microbiol 69: 2825-2830.

    Article  Google Scholar 

  • Hartemink NA, Randolph SE, Davis SA and Heesterbeek JAP (2008) The basic reproduction number for complex disease systems: defining R 0 for tick-borne infections. Am Nat 171: 743-754.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann C and Gern L (2010) Survival of Ixodes ricinus (Acari: Ixodidae) under challenging conditions of temperature and humidity is influenced by Borrelia burgdorferi sensu lato infection. J Med Entomol 47: 1196-1204.

    Article  PubMed  Google Scholar 

  • Heyman P, Cochez C, Hofhuis A, Van der Giessen J, Sprong H, Porter SR, Losson B, Saegerman C, Donoso-Mantke O, Niedrig M and Papa A (2010) A clear and present danger: tick-borne diseases in Europe. Exp Rev Anti-Infe 8: 33-50.

    Article  Google Scholar 

  • Hojgaard A, Biketov SF, Shtannikov AV, Zeidner NS and Piesman J (2009) Molecular identification of Salp15, a key salivary gland protein in the transmission of Lyme disease spirochetes, from Ixodes persulcatus and Ixodes pacificus (Acari: Ixodidae). J Med Entomol 46: 1458-1463.

    Article  PubMed  CAS  Google Scholar 

  • Hovius JWR, Schuijt TJ, De Groot KA, Roelofs JJTH, Oei GA, Marquart JA, De Beer R, Van’t Veer C, Van Der Poll T, Ramamoorthi N, Fikrig E and Van Dam AP (2008) Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva. J Inf Dis 198: 1189-1197.

    Article  CAS  Google Scholar 

  • Humair PF, Rais O and Gern L (1999) Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitol 118: 33-42.

    Article  Google Scholar 

  • Hurd H (2003) Manipulation of medically important insect vectors by their parasites. Ann Rev Entomol 48: 141-161.

    Article  CAS  Google Scholar 

  • Hurd H (2009) Evolutionary drivers of parasite-induced changes in insect life-history traits. From theory to underlying mechanisms. In: Webster JP (ed.) Natural history of host-parasite interactions. Advances in parasitology Vol. 68, Academic Press, Waltham, MA, USA, pp. 85-110.

    Google Scholar 

  • Koella JC and Packer MJ (1996) Malaria parasites enhance blood-feeding of their naturally infected vector Anopheles punctulatus. Parasitol 113: 105-109.

    Article  Google Scholar 

  • Koella JC, Rieu L and Paul REL (2002) Stage-specific manipulation of a mosquito’s host-seeking behaviour by the malaria parasite Plasmodium gallinaceum. Behav Ecol 13: 816-820.

    Article  Google Scholar 

  • Kurtenbach K, Peacey M, Rijpkema SGT, Hoodless AN, Nuttall PA and Randolph SE (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environm Microbiol 64: 1169-1174.

    CAS  Google Scholar 

  • Lane RS, Mun J, Peribáñez MA and Stubbs HA (2007) Host-seeking behavior of Ixodes pacificus (Acari: Ixodidae) nymphs in relation to environmental parameters in dense-woodland and woodland-grass habitats. J Vect Ecol 32: 342-357.

    Article  Google Scholar 

  • Lane RS, Steinlein DB and Mun J (2004) Human behaviors elevating exposure to Ixodes pacificus (Acari: Ixodidae) nymphs and their associated bacterial zoonotic agents in a hardwood forest. J Med Entomol 41: 239-248.

    Article  PubMed  Google Scholar 

  • Lees AD (1946) The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitol 37: 1-20.

    Article  CAS  Google Scholar 

  • Lees AD (1948) The sensory physiology of the sheep tick, Ixodes ricinus L. J Exp Biol 33: 379-410.

    Google Scholar 

  • Lefcort H and Durden LA (1996) The effect of infection with lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitol 113 97-103.

    Article  Google Scholar 

  • Lefèvre T and Thomas F (2008) Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infect Genet Evol 8: 504-519.

    Article  PubMed  Google Scholar 

  • Mannelli A, Bertolotti L, Gern L and Gray J (2012) Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol Rev 36: 837-861.

    Article  PubMed  CAS  Google Scholar 

  • Margos G, Vollmer SA, Ogden NH and Fish D (2011) Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11: 1545-1563.

    Article  PubMed  Google Scholar 

  • Matuschka FR, Fischer P, Heiler M, Richter D and Spielman A (1992) Capacity of european animals as reservoir hosts for the Lyme disease spirochete. J Inf Dis 165: 479-483.

    Article  CAS  Google Scholar 

  • Matuschka FR, Schinkel TW, Klug B, Spielman A and Richter D (1998) Failure of Ixodes ticks to inherit Borrelia afzelii infection. Appl Environ Microbiol 64: 3089-3091.

    PubMed  CAS  Google Scholar 

  • Mejlon HA and Jaenson TGT (1997) Questing behaviour of Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol 21: 747-754.

    Article  Google Scholar 

  • Nuttall PA and Labuda M (2008) Saliva-assisted transmission of tick-borne pathogens. In: Bowman AD and Nuttall P (eds.) Ticks, biology, disease and control. Cambridge University Press, Cambridge, UK, pp. 205-219.

    Chapter  Google Scholar 

  • Ogden NH (1997) Natural lyme disease cycles maintained via sheep by co-feeding ticks. Parasitol 115: 591.

    Article  Google Scholar 

  • Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF and Fikrig E (2004) Trospa, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119: 457-468.

    Article  PubMed  CAS  Google Scholar 

  • Patrican LA (1997) Acquisition of Lyme disease spirochetes by cofeeding Ixodes scapularis ticks. Am J Trop Med Hyg 57: 589-593.

    PubMed  CAS  Google Scholar 

  • Perret JL (2003) Computer assisted laboratory observations and field studies of the host-finding behaviour of the tick Ixodes ricinus (Acarina: Ixodidae): ecological implications of climate and light, Dissertation, University of Neuchâtel, Neuchâtel, Switzerland.

    Google Scholar 

  • Perret JL, Guigoz E, Rais O and Gern L (2000) Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a lyme borreliosis-endemic area (Switzerland). Parasitol Res 86: 554-557.

    Article  PubMed  CAS  Google Scholar 

  • Piesman J and Gern L (2008) Lyme borreliosis in Europe and North America. In: Bowman AD and Nuttall P (eds.) Ticks, biology, disease and control. Cambridge University Press, Cambridge, UK, pp. 220-252.

    Chapter  Google Scholar 

  • Plantard O, Bouju-Albert A, Malard M-A, Hermouet A, Capron G and Verheyden H (2012) Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri. PLoS One 7: e30692.

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, Anguita J, Norgard MV, Kantor FS, Anderson JF, Koski RA and Fikrig E (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436: 573-577.

    Article  PubMed  CAS  Google Scholar 

  • Randolph SE and Gern L (2003) Reply to Richter et al. (2002): Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochete Borrelia afzelii. Emerg Infect Dis 9: 893-894.

    Article  PubMed  Google Scholar 

  • Randolph SE, Green RM, Hoodless AN and Peacey MF (2002) An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol 32: 979-989.

    Article  PubMed  Google Scholar 

  • Randolph SE and Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implacations for parasite transmission. J Med Entomol 36: 741-748.

    PubMed  CAS  Google Scholar 

  • Rauter C and Hartung T (2005) Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: A metaanalysis. Appl Env Microbiol 71: 7203-7216.

    Article  CAS  Google Scholar 

  • Ready PD (2008) Leishmania manipulates sandfly feeding to enhance its transmission. Trends Parasitol 24: 151-153.

    Article  PubMed  Google Scholar 

  • Richter D, Debski A, Hubalek Z. and Matuschka F-R. (2012) Absence of Lyme disease spirochetes in larval Ixodes ricinus ticks. Vector Borne Zoon Dis 12: 21-27.

    Article  Google Scholar 

  • Richter D, Allgöwer R and Matuschka F-R (2003) Co-feeding transmission and its contribution to the perpetuation of the lyme disease spirochete Borrelia afzelii (in reply to Randolph and Gern 2003). Emerg Infect Dis 9: 895-896.

    Article  Google Scholar 

  • Richter D, Allgöwer R and Matuschka F-R (2002) Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochete Borrelia afzelii. Emerg Infect Dis 8: 1421-1425.

    Article  PubMed  Google Scholar 

  • Rogers ME and Bates PA (2007) Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Patog 3: e91.

    Article  Google Scholar 

  • Schaub GA (2006) Parasitogenic alterations of vector behaviour. Int J Med Microbiol 296: 37-40.

    Article  PubMed  Google Scholar 

  • Schuijt TJ, Hovius JW, Van der Poll T, Van Dam AP and Fikrig E (2011) Lyme borreliosis vaccination: the facts, the challenge, the future. Trends Parasitol 27: 40-47.

    Article  PubMed  CAS  Google Scholar 

  • Schuijt TJ, Hovius JW, Van Burgel ND, Ramamoorthi N, Fikrig E and Van Dam AP (2008) The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect Immun 76: 2888-2894.

    Article  PubMed  CAS  Google Scholar 

  • Schütte C and Dicke M (2008) Verified and potential pathogens of predatory mites (Acari: Phytoseiidae). Exp Appl Acarol 46: 307-328.

    Article  PubMed  Google Scholar 

  • Schütte C, Poitevin O, Negash T and Dicke M (2006) A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae): disease transmission by adult females. Exp Appl Acarol 39: 85-103.

    Article  PubMed  Google Scholar 

  • Schwan TG, Burgdorfer W, Schrumpf ME and Karstens RH (1988) The urinary bladder, a consistent source of Borrelia burgdorferi in experimentally infected white-footed mice (Peromyscus leucopus). J Clin Microbiol 26: 893-895.

    PubMed  CAS  Google Scholar 

  • Schwan TG and Piesman J (2002) Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Inf Dis 8: 115-121.

    Article  Google Scholar 

  • Smith R and Takkinen J (2006) Lyme borreliosis: Europe-wide coordinated surveillance and action needed? Euro Surveillance 11: E060622 060621.

    Google Scholar 

  • Sonenshine DE (1991) Biology of ticks, Vol. 1. Oxford University Press, New York, NY, USA.

    Google Scholar 

  • Stanek G (2009) Pandora’s box: pathogens in Ixodes ricinus ticks in central Europe. Wien Klin Wochensch 121: 673-683.

    Article  Google Scholar 

  • Tijsse-Klasen E, Braks M, Scholte E-J and Sprong H (2011) Parasites of vectors – Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands. Parasites & Vectors 4: 228.

    Article  CAS  Google Scholar 

  • Van Overbeek L, Gassner F, Lombaers van der Plas C, Kastelein P, Nunes-da Rocha U and Takken W (2008) Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. FEMS Microbiol Ecol 66: 72-84.

    Article  PubMed  Google Scholar 

  • Vor T, Kiffner C, Hagedorn P, Niedrig M and Rähe F (2010) Tick burden on European roe deer (Capreolus capreolus). Exp Appl Acarol: 1-13.

    Google Scholar 

  • Zeidner NS, Schneider BS, Nuncio MS, Gern L and Piesman J (2002) Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species-specific. J Parasitol 88: 1276-1278.

    PubMed  CAS  Google Scholar 

  • Zhioua E, Aeschlimann A and Gern L (1994) Infection of field-collected Ixodes ricinus (Acari: Ixodidae) larvae with Borrelia burgdorferi in Switzerland. J Med Entomol 31: 763-766.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Gassner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Gassner, F., Hartemink, N. (2013). Tick – Borrelia interactions: burden or benefit?. In: Ecology of parasite-vector interactions. Ecology and control of vector-borne diseases, vol 3. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-744-8_7

Download citation

Publish with us

Policies and ethics