Skip to main content

Plant-sugar feeding and vectorial capacity

  • Chapter

Part of the book series: Ecology and control of vector-borne diseases ((ECVD,volume 3))

Abstract

Sugar feeding is a common behaviour of male and female mosquitoes, sand flies, and other Dipteran vectors. In some species it is essential to one or both sexes; in others it is facultative. Even among females of anthropophilic species that are predisposed to a diet of frequent blood meals sugar is often taken, depending on internal state and opportunity. This opportunism is expressed as an increased likelihood of feeding on nectar when access to blood and oviposition sites is limited. Newly emerged Anopheles gambiae females sometimes show a preference for sugar before mating even when blood hosts are available, likely depending both on the strength of plant and animal kairomones and on the attractive qualities of each. Incorporation of sugar in the diet by mosquitoes affects certain components of their vectorial capacity. Environmental conditions, such as bed net coverage and abundance of nectar sources, will affect the extent to which mosquitoes feed on sugar. If the effect of sugar on vectorial capacity is significant, these conditions will impact transmission rates of vector-borne diseases and should be included in epidemiological models. Vectorial capacity is pulled in opposing directions by sugar feeding, through its effect on the two most important components, survival and biting rate. Survival of females feeding on sugar and blood is greater than that of females restricted to a blood-only diet, according to the vast majority of studies, whereas biting rates usually are depressed when sugar is available, but field evidence is scarce. Vector density results from survival and fecundity. Most studies on vectors suggest that although fecundity per gonotrophic cycle is enhanced by sugar feeding, long-term reproductive fitness in anthropophilic species is slightly depressed. Vector competence appears to be negatively affected by sugar feeding. In certain cases plant nectar contains factors that inhibit development of the parasite in the vector. More common may be positive effects on the vector’s immune response, but this appears to depend heavily on the host-parasite system, condition of the vector, and possibly genotype-by-environment interactions. Estimating the combined effect of these factors at different levels of sugar intake remains difficult at this point, but an overall impression is that vectorial capacity is somewhat decreased in environments where sugar is readily accessed. Sugar feeding behaviour can be exploited for control, the most promising methods employing sugar solutions combined with attractants and oral insecticides for direct control and attractive phytochemicals for surveillance. Main questions facing both approaches are their suitability in verdant areas where attractants will compete with a diverse flora. For females of anthropophilic species in settings with abundant blood hosts, the question may be whether populations can be effectively suppressed by targeting male mosquitoes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Malek AA (1964) Study of the feeding habits of Anopheles sergentii Theo. at Siwa oasis using radiophosphorus. Bull WHO 30: 137-139.

    PubMed  CAS  Google Scholar 

  • Abdel-Malek AA and Baldwin WF (1961) Specificity of plant feeding in mosquitoes as determined by radioactive phosphorus. Nature 192: 178-179.

    Article  PubMed  CAS  Google Scholar 

  • Alexander B and Usma MC (1994) Potential sources of sugar for the phlebotomine sandfly Lutzomyia youngi (Diptera: Psychodidae) in a Colombian coffee plantation. Ann Trop Med Parasitol 88: 543-549.

    PubMed  CAS  Google Scholar 

  • Ali A, Rui-de Xue R and Barnard DR (2006) Effects of sublethal exposure to boric acid sugar bait on adult survival, host-seeking, bloodfeeding behavior, and reproduction of Stegomyia albopicta. J Am Mosq Control Assoc 22: 464-468.

    Article  PubMed  CAS  Google Scholar 

  • Andersson IH (1992) The effect of sugar meals and body size on fecundity and longevity of female Aedes communis (Diptera: Culicidae). Physiol Entomol 17: 203-207.

    Article  Google Scholar 

  • Basseri HR, Doosti S, Akbarzadeh K, Nateghpour M, Whitten M and Ladoni H (2008) Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle. Malar J 7: 131.

    Article  PubMed  Google Scholar 

  • Beerntsen BT, James AA and Christensen BM (2000) Genetics of mosquito vector competence. Microbiol Mol Biol Rev 64: 115.

    Article  PubMed  CAS  Google Scholar 

  • Beier JC (1996) Frequent blood-feeding and restrictive sugar-feeding behavior enhance the malaria vector potential of Anopheles gambiae s.l. and An. funestus (Diptera: Culicidae) in western Kenya. J Med Entomol 33: 613-618.

    PubMed  CAS  Google Scholar 

  • Beier JC, Davis JR, Vaughan JA, Noden BH and Beier MS (1991) Quantitation of Plasmodium falciparum sporozoites transmitted in vitro by experimentally infected Anopheles gambiae and Anopheles stephensi. Am J Trop Med Hyg 44: 564.

    PubMed  CAS  Google Scholar 

  • Beier JC, Keating J, Githure JI, MacDonald MB, Impoinvil DE and Novak RJ (2008) Integrated vector management for malaria control. Malar J 7: S4.

    Article  PubMed  Google Scholar 

  • Bellan SE (2010) The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control. PLoS ONE 5: e10165.

    Article  PubMed  CAS  Google Scholar 

  • Billingsley PF and Hecker H (1991) Blood digestion in the mosquito, Anopheles stephensi Liston (Diptera: Culicidae): activity and distribution of trypsin, aminopeptidase, and alpha-glucosidase in the midgut. J Med Entomol 28: 865-871.

    PubMed  CAS  Google Scholar 

  • Billingsley PF, Hodivala KJ, Winger LA and Sinden RE (1991) Detection of mature malaria infections in live mosquitoes. Trans R Soc Trop Med Hyg 85: 450-453.

    Article  PubMed  CAS  Google Scholar 

  • Bowen MF (1992a) Patterns of sugar feeding in diapausing and non-diapausing Culex pipiens (Diptera: Culicidae) females. J Med Entomol 29: 843-849.

    PubMed  CAS  Google Scholar 

  • Bowen MF (1992b) Terpene-sensitive receptors in female Culex pipiens mosquitoes: Electrophysiology and behaviour. J Insect Physiol 38: 759-764.

    Article  CAS  Google Scholar 

  • Bowen MF and Romo J (1995a) Host-seeking and sugar-feeding in the autogenous mosquito Aedes bahamensis (Diptera: Culicidae). J Vector Ecol 20: 195-202.

    Google Scholar 

  • Bowen MF and Romo J (1995b) Sugar deprivation in adult Aedes bahamensis females and its effects on host seeking and longevity. J Vector Ecol 20: 211-215.

    Google Scholar 

  • Bowen MF, Haggart D and Romo J (1995) Long-distance orientation, nutritional preference, and electrophysiological responsiveness in the mosquito Aedes bahamensis. J Vector Ecol 20: 203-210.

    Google Scholar 

  • Braks MAH, Juliano SA and Lounibos LP (2006) Superior reproductive success on human blood without sugar is not limited to highly anthropophilic mosquito species. Med Vet Entomol 20: 53-59.

    Article  PubMed  CAS  Google Scholar 

  • Briegel H (1985) Mosquito reproduction: Incomplete utilization of the blood meal protein for oögenesis. J Insect Physiol 31: 15-21.

    Article  CAS  Google Scholar 

  • Briegel H (1990) Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol 27: 839-850.

    PubMed  CAS  Google Scholar 

  • Briegel H and Hörler E (1993) Multiple bloodmeals as reproductive strategy in Anopheles (Diptera: Culicidae). J Med Entomol 30: 975-985.

    PubMed  CAS  Google Scholar 

  • Briegel H, Hefti M and DiMarco E (2002) Lipid metabolism during sequential gonotrophic cycles in large and small female Aedes aegypti. J Insect Physiol 48: 547-554.

    Article  PubMed  CAS  Google Scholar 

  • Briegel H, Knüsel I and Timmerman SE (2001) Aedes aegypti: size, reserves, survival, and flight potential. J Vector Ecol. 26: 21-31.

    PubMed  CAS  Google Scholar 

  • Briegel H, Waltert A and Kuhn R (2001) Reproductive physiology of Aedes (aedimorphus) vexans (Diptera: Culicidae) in relation to flight potential. J Med Entomol 38: 557-565.

    Article  PubMed  CAS  Google Scholar 

  • Burgin SG and Hunter FF (1997a) Evidence of honeydew feeding in black flies (Diptera: Simuliidae). Can Entomol 129: 859-869.

    Article  Google Scholar 

  • Burgin SG and Hunter FF (1997b) Nectar versus honeydew as sources of sugar for male and female black flies (Diptera: Simuliidae). J Med Entomol 34: 605-608.

    PubMed  CAS  Google Scholar 

  • Burgin SG and Hunter FF (1997c) Sugar-meal sources used by female black flies (Diptera: Simuliidae): A four-habitat study. Can J Zool 75: 1066-1072.

    Article  CAS  Google Scholar 

  • Burkett DA, Butler JE and Kline DL (1998) Field evaluation of colored light-emitting diodes as attractants for woodland mosquitoes and other diptera in north central florida. J Am Mosq Control Assoc 14: 186-195.

    PubMed  CAS  Google Scholar 

  • Burkett DA, Kline DL and Carlson DA (1999) Sugar meal composition of five north central Florida mosquito species (Diptera: Culicidae) as determined by gas chromatography. J Med Entomol 36: 462-467.

    PubMed  CAS  Google Scholar 

  • Canyon DV, Hii JLK and Muller R (1999) Effect of diet on biting, oviposition, and survival of Aedes aegypti (Diptera: Culicidae). J Med Entomol 36: 301-308.

    PubMed  CAS  Google Scholar 

  • Carey AF, Wang G, Su CY, Zwiebel LJ and Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464: 66-71.

    Article  PubMed  CAS  Google Scholar 

  • Carey JR (2001) Insect biodemography. Annu Rev Entomol 46: 79-110.

    Article  PubMed  CAS  Google Scholar 

  • Caswell H (2001) Matrix population models, second edition. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Charlesworth B (1994) Evolution in age-structured populations. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C, Epis S, Faye I, Sagnon NF and Alma A (2010) Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol 76: 7444.

    Article  PubMed  CAS  Google Scholar 

  • Christensen BM (1981) Effect of Dirofilaria immititus on the fecundity of Aedes trivittatus. Mosq News 41: 78-81.

    Google Scholar 

  • Chun J, Riehle M and Paskewitz SM (1995) Effect of mosquito age and reproductive status on melanization of sephadex beads in Plasmodium-refractory and -susceptible strains of Anopheles gambiae. J Invertebr Pathol 66: 11-17.

    Article  PubMed  CAS  Google Scholar 

  • Clark CW and Mangel M (2000) Dynamic state variable models in ecology. Oxford University Press, New York, NY, USA.

    Google Scholar 

  • Clarke SE, Bøgh C, Brown RC, Walraven GEL, Thomas CJ and Lindsay SW (2002) Risk of malaria attacks in Gambian children is greater away from malaria vector breeding sites. Trans R Soc Trop Med Hyg 96: 499-506.

    Article  PubMed  Google Scholar 

  • Clements AN (1992) The biology of mosquitoes. Volume 1: Development, nutrition and reproduction. Chapman and Hall, London, UK.

    Google Scholar 

  • Clements AN and Paterson GD (1981) The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18: 373-399.

    Article  Google Scholar 

  • Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH, Collins WE, Campbell CC and Gwadz RW (1986) Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234: 607.

    Article  PubMed  CAS  Google Scholar 

  • Costero A, Edman JD, Clark CG and Scott TW (1998) Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. J Med Entomol 35: 809-813.

    PubMed  CAS  Google Scholar 

  • Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M and Cherif A (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76: 6963-6970.

    Article  PubMed  CAS  Google Scholar 

  • Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Esposito F, Bandi C, Daffonchio D and Favia G (2008) Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol 18: R1087-R1088.

    Article  PubMed  CAS  Google Scholar 

  • Dao A, Adamou A, Yaro AS, Maiga HM, Kassogue Y, Traore SF and Lehmann T (2008) Assessment of alternative mating strategies in Anopheles gambiae: Does mating occur indoors? J Med Entomol 45: 643-652.

    Article  PubMed  Google Scholar 

  • Dawes EJ, Churcher TS, Zhuang S, Sinden RE and Basáñez MG (2009) Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission. Malar J 8: 228.

    Article  PubMed  Google Scholar 

  • Dawidowicz K, Hernandez AG, Infante RB and Convit J (1975) The surface membrane of Leishmania. I. The effects of lectins on different stages of Leishmania braziliensis. J Parasitol 61: 950-953.

    CAS  Google Scholar 

  • Day JF, Edman JD and Scott TW (1994) Reproductive fitness and survivorship of Aedes aegypti (Diptera: Culicidae) maintained on blood, with field observations from Thailand. J Med Entomol 31: 611-617.

    PubMed  CAS  Google Scholar 

  • De Meillon B, Sebastian A and Khan ZH (1967) Cane-sugar feeding in Culex pipiens fatigans. Bull WHO 36: 53-65.

    PubMed  Google Scholar 

  • Dimond JB, Lea AO, Hahnert WF and DeLong DM (1956) The amino acids required for egg production in Aedes aegypti. Can Entomol 88: 57-62.

    Article  CAS  Google Scholar 

  • Downes JA (1958) The feeding habits of biting flies and their significance in classification. Annu Rev Entomol 3: 249-266.

    Article  Google Scholar 

  • Downes JA (1969) The swarming and mating flight of Diptera. Annu Rev Entomol 14: 271-298.

    Article  Google Scholar 

  • Dwyer DM (1974) Lectin binding saccharides on a parasitic protozoan. Science 184: 471.

    Article  PubMed  CAS  Google Scholar 

  • Dye C (1992) The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol 37: 1-19.

    Article  PubMed  CAS  Google Scholar 

  • Edman JD, Strickman D, Kittayapong P and Scott TW (1992) Female Aedes aegypti (Diptera: Culicidae) in Thailand rarely feed on sugar. J Med Entomol 29: 1035-1038.

    PubMed  CAS  Google Scholar 

  • Eischen FA and Foster WA (1983) Life span and fecundity of adult female Aedes aegypti (Diptera: Culicidae) fed aqueous extracts of pollen. Ann Entomol Soc Am 76: 661-663.

    Google Scholar 

  • Emlen ST and Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197: 215-223.

    Article  PubMed  CAS  Google Scholar 

  • Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L and Borin S (2007) Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. PNAS 104: 9047.

    Article  PubMed  CAS  Google Scholar 

  • Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, Bandi C and Daffonchio D (2008) Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. In: Aksoy S (ed.) Transgenesis and the management of vector-borne disease. Landes Bioscience and Springer, Berlin, Germany.

    Google Scholar 

  • Feinsod FM and Spielman A (1980) Nutrient-mediated juvenile hormone secretion in mosquitoes. J Insect Physiol 26: 113-117.

    Article  Google Scholar 

  • Ferdig MT, Beerntsen BT, Spray FJ, Li J and Christensen BM (1993) Reproductive costs associated with resistance in a mosquito-filarial worm system. Am J Trop Med Hyg 49: 756.

    PubMed  CAS  Google Scholar 

  • Ferguson HM and Read AF (2002) Genetic and environmental determinants of malaria virulence in mosquitoes. Proc R Soc B 269: 1217-1224.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS, Gimnig JE, Fish D and Killeen GF (2010) Ecology: A prerequisite for malaria elimination and eradication. PLoS Medicine 7: e1000303.

    Article  PubMed  Google Scholar 

  • Fernandes L and Briegel H (2005) Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol 30: 11-26.

    PubMed  Google Scholar 

  • Fernandez NM and Klowden MJ (1995) Male accessory gland substances modify the host-seeking behavior of gravid Aedes aegypti mosquitoes. J Insect Physiol 41: 965-970.

    Article  CAS  Google Scholar 

  • Foster WA (1995) Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol 40: 443-474.

    Article  PubMed  CAS  Google Scholar 

  • Foster WA (2008) Phytochemicals as population sampling lures. J Am Mosq Control Assoc 24: 138-146.

    Article  PubMed  CAS  Google Scholar 

  • Foster WA and Eischen FA (1987) Frequency of blood-feeding in relation to sugar availability in Aedes aegypti and Anopheles quadrimaculatus (Diptera: Culicidae). Ann Entomol Soc Am 80: 103-108.

    Google Scholar 

  • Foster WA and Hancock RG (1994) Nectar-related olfactory and visual attractants for mosquitoes. J Am Mosq Control Assoc 10: 288-296.

    PubMed  CAS  Google Scholar 

  • Foster WA and Takken W (2004) Nectar-related vs. human-related volatiles: Behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res 94: 145-157.

    Article  PubMed  CAS  Google Scholar 

  • Gadawski RM and Smith SM (1992) Nectar sources and age structure in a population of Aedes provocans. J Med Entomol 29: 879-886.

    PubMed  CAS  Google Scholar 

  • Garrett-Jones C (1964) Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature 204: 1173-1175.

    Article  PubMed  CAS  Google Scholar 

  • Garrett-Jones C and Shidrawi GR (1969) Malaria vectorial capacity of a population of Anopheles gambiae: An exercise in epidemiological entomology. Bull WHO 40: 531.

    PubMed  CAS  Google Scholar 

  • Gary RE and Foster WA (2001) Effects of available sugar on the reproductive fitness and vectorial capacity of the malaria vector Anopheles gambiae (Diptera: Culicidae). J Med Entomol 38: 22-28.

    Article  PubMed  Google Scholar 

  • Gary RE and Foster WA (2004) Anopheles gambiae feeding and survival on honeydew and extra-floral nectar of peridomestic plants. Med Vet Entomol 18: 102-107.

    Article  PubMed  Google Scholar 

  • Gary RE and Foster WA (2006) Diel timing and frequency of sugar feeding in the mosquito Anopheles gambiae, depending on sex, gonotrophic state and resource availability. Med Vet Entomol 20: 308-316.

    Article  PubMed  Google Scholar 

  • Gary RE, Cannon JW and Foster WA (2009) Effect of sugar on male Anopheles gambiae Giles (Diptera: Culicidae) mating performance, as modified by temperature, space, and body size. Parasites and Vectors 2: 19.

    Article  PubMed  Google Scholar 

  • Gillies MT (1968) Journal of meetings. Proc R Entomol Soc London 33: 27.

    Google Scholar 

  • Gooding RH (1975) Digestive enzymes and their control in haematophagous arthropods. Acta Trop 32: 96.

    PubMed  CAS  Google Scholar 

  • Gouagna LC, Poueme RS, Dabire KR, Ouedraogo J, Fontenille D and Simard F (2010) Patterns of sugar feeding and host plant preferences in adult males of An. gambiae (Diptera: Culicidae). J Vector Ecol 35: 267-276.

    Article  PubMed  Google Scholar 

  • Goulson D (1999) Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect Plant Ecol Evol Syst 2: 185-209.

    Article  Google Scholar 

  • Grossman GL, Campos Y, Severson DW and James AA (1997) Evidence for two distinct members of the amylase gene family in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 27: 769-781.

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Müller G, Schlein Y, Novak RJ and Beier JC (2011) Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLoS One 6: e15996.

    Article  PubMed  CAS  Google Scholar 

  • Hall-Mendelin S, Ritchie SA, Johansen CA, Zborowski P, Cortis G, Dandridge S, Hall RA and Van den Hurk AF (2010) Exploiting mosquito sugar feeding to detect mosquito-borne pathogens. Proc Natl Acad Sci USA 107: 11255-11259.

    Article  PubMed  CAS  Google Scholar 

  • Ham PJ, Phiri JS and Nolan GP (1991) Effect of n acetyl d glucosamine on the migration of Brugia pahangi microfilariae into the haemocoel of Aedes aegypti. Med Vet Entomol 5: 485-493.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JGC and El Naiem D (2000) Sugars in the gut of the sandfly Phlebotomus orientalis from Dinder national park, eastern Sudan. Med Vet Entomol 14: 64-70.

    Article  PubMed  CAS  Google Scholar 

  • Hancock RG and Foster WA (1997) Larval and adult nutrition effects on blood/nectar choice of Culex nigripalpus mosquitoes. Med Vet Entomol 11: 112-122.

    Article  PubMed  CAS  Google Scholar 

  • Hancock RG and Foster WA (2000) Exogenous juvenile hormone and methoprene, but not male accessory gland substances or ovariectomy, affect the blood/nectar choice of female Culex nigripalpus mosquitoes. Med Vet Entomol 14: 376-382.

    Article  PubMed  CAS  Google Scholar 

  • Hancock RG, Yee WL and Foster WA (1990) Tests of Sabethes cyaneus leg paddle function in mating and flight. J Am Mosq Control Assoc 6: 733-735.

    PubMed  CAS  Google Scholar 

  • Hardy JL, Houk EJ, Kramer LD and Reeves WC (1983) Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28: 229-262.

    Article  PubMed  CAS  Google Scholar 

  • Harrington LC, Edman JD and Scott TW (2001) Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 38: 411-422.

    Article  PubMed  CAS  Google Scholar 

  • Harrington LC, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD and Scott TW (2008) Age-dependent survival of the dengue vector Aedes aegypti (Diptera: Culicidae) demonstrated by simultaneous release recapture of different age cohorts. J Med Entomol 45: 307-313.

    Article  PubMed  Google Scholar 

  • Healy TP and Jepson PC (1988) The location of floral nectar sources by mosquitoes: The long-range responses of Anopheles arabiensis Patton (Diptera: Culicidae) to Achillea millefolium flowers and isolated floral odour. Bull Entomol Res 78: 651-657.

    Article  Google Scholar 

  • Hocking B (1953) The intrinsic range and speed of flight of insects. Trans. R. Ent. Soc. Lond. 104: 223-345.

    Google Scholar 

  • Hocking B (1968) Insect-flower associations in the high arctic with special reference to nectar. Oikos 19: 359-387.

    Article  Google Scholar 

  • Holliday-Hanson ML, Yuval B and Washino R (1997) Energetics and sugar-feeding of field collected anopheline females. J Vector Ecol 22: 83-89.

    PubMed  CAS  Google Scholar 

  • Howell P and Knols BGJ (2009) Male mating biology. Malar J 8: S8.

    Article  PubMed  CAS  Google Scholar 

  • Hunter FF and Ossowski AM (1999) Honeydew sugars in wild-caught female horse flies (Diptera: Tabanidae). J Med Entomol 36: 896-899.

    PubMed  CAS  Google Scholar 

  • Hurd H, Hogg JC and Renshaw M (1995) Interactions between bloodfeeding, fecundity and infection in mosquitoes. Parasitol Today 11: 411-416.

    Article  Google Scholar 

  • Impoinvil DE, Kongere JO, Foster WA, Njiru BN, Killeen GF, Githure JI, Beier JC, Hassanali A and Knols BJG (2004) Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Med Vet Entomol 18: 108-115.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen RL, Slutsky GM, Greenblatt CL and Schnur LF (1982) Surface reactions of leishmania i. Lectin mediated agglutination. Ann Trop Med Parasitol 76: 45-52.

    Google Scholar 

  • Jacobson R, Schlein Y and Eisenberger C (2001) The biological function of sand fly and leishmania glycosidases. Med Microbiol Immunol 190: 51-55.

    PubMed  CAS  Google Scholar 

  • Jacobson RL and Schlein Y (1999) Lectins and toxins in the plant diet of Phlebotomus papatasi (Diptera: Psychodidae) can kill Leishmania major promastigotes in the sandfly and in culture. Ann Trop Med Parasitol 93: 351-356.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RL and Schlein Y (2001) Phlebotomus papatasi and Leishmania major parasites express α-amylase and α-glucosidase. Acta Trop 78: 41-49.

    Article  PubMed  CAS  Google Scholar 

  • Jaenson TG and Ameneshewa B (1991) Prehibernation diet and reproductive condition of female Anopheles messeae in Sweden. Med Vet Entomol 5: 243.

    Article  PubMed  CAS  Google Scholar 

  • James AA and Rossignol PA (1991) Mosquito salivary glands: Parasitological and molecular aspects. Parasitol Today 7: 267-271.

    Article  PubMed  CAS  Google Scholar 

  • Janzen TA and Hunter FF (1998) Honeydew sugars in wild-caught female deer flies (Diptera: Tabanidae). J Med Entomol 35: 685-689.

    PubMed  CAS  Google Scholar 

  • Jarzen DM, Hogsette JA (2008) Pollen from the exoskeletons of stable flies, Stomoxys calcitrans (Linnaeus 1758), in Gainesville, Florida, U.S.A. Palynology 32: 77-81.

    Google Scholar 

  • Jepson PC and Healy TP (1988) The location of floral nectar sources by mosquitoes: An advanced bioassay for volatile plant odours and initial studies with Aedes aegypti (Diptera: Culicidae). Bull Entomol Res 78: 641-650.

    Article  Google Scholar 

  • Jhumur US, Dötterl S and Jürgens A (2006) Naïve and conditioned responses of Culex pipiens pipiens biotype molestus (Diptera: Culicidae) to flower odors. J Med Entomol 43: 1164-1170.

    Article  PubMed  Google Scholar 

  • Jhumur US, Dötterl S and Jürgens A (2007) Electrophysiological and behavioural responses of mosquitoes to the volatiles of Silene otites (Caryophyllaceae). Arthropod-Plant Interact 1: 245-254.

    Article  Google Scholar 

  • Jhumur US, Dötterl S and Jürgens A (2008) Floral odors of Silene otites: their variability and attractiveness to mosquitoes. J Chem Ecol 34: 14-25.

    Article  PubMed  CAS  Google Scholar 

  • Jones CJ, Hogsette JA, Patterson RS and Milne DE (1985) Effects of natural saccharide and pollen extract feeding on stable fly (Diptera: Muscidae) longevity. Environ Entomol 14: 223-227.

    Google Scholar 

  • Joy TK, Arik AJ, Corby-Harris V, Johnson AA and Riehle MA (2010) The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Exp Geront 45: 685-690.

    Article  Google Scholar 

  • Junnila A, Müller GC and Schlein Y (2010) Species identification of plant tissues from the gut of An. sergentii by DNA analysis. Acta Trop 115: 227-233.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann C and Briegel H (2004) Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. J Vector Ecol 29: 140-153.

    PubMed  Google Scholar 

  • Kelly R and Edman JD (1997) Infection and transmission of Plasmodium gallinaceum (Eucoccida: Plasmodiidae) in Aedes aegypti (Diptera: Culicidae): Effect of preinfection sugar meals and postinfection blood meals. J Vector Ecol 22: 36-42.

    PubMed  CAS  Google Scholar 

  • Klowden MJ (1986) Effects of sugar deprivation on the host-seeking behaviour of gravid Aedes aegypti mosquitoes. J Insect Physiol 32: 479-483.

    Article  CAS  Google Scholar 

  • Klowden MJ and Briegel H (1994) Mosquito gonotrophic cycle and multiple feeding potential: Contrasts between Anopheles and Aedes (Diptera: Culicidae). J Med Entomol 31: 618-622.

    PubMed  CAS  Google Scholar 

  • Klowden MJ and Dutro SM (1990) Effects of carbohydrate ingestion on the pre-oviposition behavior of the mosquito Aedes aegypti. Bull Soc Vector Ecol 15: 59-62.

    Google Scholar 

  • Klowden MJ and Lea AO (1979) Abdominal distention terminates subsequent host-seeking behaviour of Aedes aegypti following a blood meal. J Insect Physiol 25: 583-585.

    Article  PubMed  CAS  Google Scholar 

  • Klowden MJ, Blackmer JL and Chambers GM (1988) Effects of larval nutrition on the host-seeking behavior of adult Aedes aegypti mosquitoes. J Am Mosq Control Assoc 4: 73.

    PubMed  CAS  Google Scholar 

  • Koella JC and Boëte C (2002) A genetic correlation between age at pupation and melanization immune response of the yellow fever mosquito Aedes aegypti. Evolution 56: 1074-1079.

    PubMed  Google Scholar 

  • Koella JC and Sørensen FL (2002) Effect of adult nutrition on the melanization immune response of the malaria vector Anopheles stephensi. Med Vet Entomol 16: 316-320.

    Article  PubMed  CAS  Google Scholar 

  • Laarman JJ (1968) The intake of sugars by females of wild Anopheles gambiae and Anopheles funestus. Acta Leidensia 36: 137-144.

    Google Scholar 

  • Lambrechts L, Chavatte JM, Snounou G and Koella JC (2006) Environmental influence on the genetic basis of mosquito resistance to malaria parasites. Proc R Soc B 273: 1501-1506.

    Article  PubMed  Google Scholar 

  • Lea AO (1965) Sugar-baited insecticide residues against mosquitoes. Mosq News 25: 65-66.

    Google Scholar 

  • Lea AO, Dimond JB and DeLong DM (1958) Some nutritional factors in egg production by Aedes aegypti. Proc 10th Int Congr Entomol 1956: 793-796.

    Google Scholar 

  • Lindh JM, Terenius O, Eriksson-Gonzales K, Knols BGJ and Faye I (2006) Re-introducing bacteria in mosquitoes – a method for determination of mosquito feeding preferences based on coloured sugar solutions. Acta Trop 99: 173-183.

    Article  PubMed  CAS  Google Scholar 

  • Lounibos LP and Conn J (1991) Fecundity, parity, and adult feeding relationships among Nyssorhynchus malaria vectors from Venezuela. Mem Inst Oswaldo Cruz 86: 57-66.

    Article  PubMed  CAS  Google Scholar 

  • Lyimo EO and Takken W (1993) Effects of adult body size on fecundity and the pre-gravid rate of Anopheles gambiae females in Tanzania. Med Vet Entomol 7: 328-332.

    Article  PubMed  CAS  Google Scholar 

  • Ma BO and Roitberg BD (2008) The role of resource availability and state-dependence in the foraging strategy of blood-feeding mosquitoes. Evol Ecol Res 10: 1111-1130.

    Google Scholar 

  • MacDonald G (1957) The epidemiology and control of malaria. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Magnarelli LA (1978) Nectar-feeding by female mosquitoes and its relation to follicular development and parity. J Med Entomol 14: 527-530.

    PubMed  CAS  Google Scholar 

  • Magnarelli LA (1979) Diurnal nectar-feeding of Aedes cantator and Ae. sollicitans (Diptera: Culicidae). Environ Entomol 8: 949-955.

    Google Scholar 

  • Magnarelli LA (1980) Bionomics of Psorophora ferox (Diptera: Culicidae): Seasonal occurrence and acquisition of sugars. J Med Entomol 17: 328-332.

    CAS  Google Scholar 

  • Magnarelli LA and Anderson JF (1977) Follicular development in salt marsh tabanidae (Diptera) and incidence of nectar feeding with relation to gonotrophic activity. Ann Entomol Soc Am 70: 529-533.

    Google Scholar 

  • Maier WA, Becker-Feldman H and Seitz HM (1987) Pathology of malaria-infected mosquitoes. Parasitol Today 3: 216-218.

    Article  PubMed  CAS  Google Scholar 

  • Manda H, Gouagna L, Githure J, Hassanali A and Foster W (2008) Rate of plant sugar digestion at different physiological status of females Anopheles gambiae and effects of plant diets quality on their lifespan and reproduction. In: Morris S and Vosloo A (eds.) Molecules to migration: the pressures of life. Medimond, Bologna, Italy, pp. 165-172.

    Google Scholar 

  • Manda H, Gouagna LC, Foster WA, Jackson RR, Beier JC, Githure JI and Hassanali A (2007a) Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae. Malar J 6: 113.

    Article  PubMed  Google Scholar 

  • Manda H, Gouagna LC, Kabiru EW, Foster WA, Beier JC, Hassanali A and Githure JI (2007c) Discriminative feeding behavior of Anopheles gambiae s.s. on different plant species and effects on its survival, fecundity, and vector competence in a malaria endemic area of western Kenya. Proc 56th Meeting of Am Soc Trop Med Hyg (Abstract).

    Google Scholar 

  • Manda H, Gouagna LC, Kabiru EW, Hassanali A, Yan G, Beier JC and Githure JI (2005) Plasmodium falciparum development in the midgut of Anopheles gambiae s.s. feeding on some predominant plants in western Kenya. Acta Trop 95S: S17-18 (Abstract).

    Google Scholar 

  • Manda H, Gouagna LC, Nyandat E, Kabiru W, Jackson RR, Foster WA, Githure JI, Beier JC and Hassanali A (2007b) Discriminative feeding behaviour of Anopheles gambiae s.s on endemic plants in western Kenya. Med Vet Entomol 21: 103-111.

    Article  PubMed  CAS  Google Scholar 

  • Mangel M and Clark CW (1988) Dynamic modeling in behavioral ecology. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Marinotti O, James AA and Ribeiro JM (1990) Diet and salivation in female Aedes aegypti mosquitoes. J Insect Physiol 36: 545-548.

    Article  CAS  Google Scholar 

  • Martinez-Ibarra JA, Rodriguez MH, Arredondo-Jimenez JI and Yuval B (1997) Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico. J Med Entomol 34: 589-593.

    PubMed  CAS  Google Scholar 

  • Mauer DJ and Rowley WA (1999) Attraction of Culex pipiens pipiens (Diptera: Culicidae) to flower volatiles. J Med Entomol 36: 503-507.

    PubMed  CAS  Google Scholar 

  • McCall PJ and Eaton G (2001) Olfactory memory in the mosquito Culex quinquefasciatus. Med Vet Entomol 15: 197-203.

    Article  PubMed  CAS  Google Scholar 

  • McCall PJ and Kelly DW (2002) Learning and memory in disease vectors. Trends Parasitol 18: 429-433.

    Article  PubMed  CAS  Google Scholar 

  • McCall PJ, Mosha FW, Njunwa KJ and Sherlock K (2001) Evidence for memorized site-fidelity in Anopheles arabiensis. Trans R Soc Trop Med Hyg 95: 587-590.

    Article  PubMed  CAS  Google Scholar 

  • McCrae AWR (1989) Differences in sugar-feeding activity between tropical and temperate mosquitoes: field observations and their implications. Vector Ecol Newsletter 20: 16.

    Google Scholar 

  • Midega JT, Mbogo CM, Mwambi H, Wilson MD, Ojwang G, Mwangangi JM, Nzovu JG, Githure JI, Yan G and Beier JC (2007) Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods. J Med Entomol 44: 923-929.

    Article  PubMed  Google Scholar 

  • Morrison AC, Costero A, Edman JD and Scott TW (1999) Increased fecundity of female Aedes aegypti (Diptera: Culicidae) fed only human blood prior to release in Puerto Rico. J Am Mosq Control Assoc 15: 98-104.

    PubMed  CAS  Google Scholar 

  • Mostowy WM and Foster WA (2004) Antagonistic effects of energy status on meal size and egg-batch size of Aedes aegypti (Diptera: Culicidae) J Vector Ecol 29: 84-93.

    Google Scholar 

  • Muirhead-Thompson RC (1951) Mosquito behavior in relation to malaria transmission in the tropics. E. Arnold, London, UK.

    Google Scholar 

  • Müller GC and Schlein Y (2004) Nectar and honeydew feeding of Phlebotomus papatasi in a focus of Leishmania major in Neot Hakikar oasis. J Vector Ecol 29: 154-158.

    PubMed  Google Scholar 

  • Müller GC and Schlein Y (2005) Plant tissues: the frugal diet of mosquitoes in adverse conditions. Med Vet Entomol 19: 413-422.

    Article  PubMed  Google Scholar 

  • Müller GC and Schlein Y (2006) Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol 36: 1077-1080.

    Article  PubMed  Google Scholar 

  • Müller GC and Schlein Y (2008) Efficacy of toxic sugar baits against adult cistern-dwelling Anopheles claviger. Trans R Soc Trop Med Hyg 102: 480-484.

    Article  PubMed  Google Scholar 

  • Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, Doumbia S and Schlein Y (2010a) Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar J 9: 262.

    Article  PubMed  Google Scholar 

  • Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, Doumbia S and Schlein Y (2010b) Successful field trial of attractive toxic sugar bait (atsb) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, west Africa. Malar J 9: 210-210.

    Article  PubMed  CAS  Google Scholar 

  • Müller GC, Junnila A and Schlein Y (2010c) Effective control of adult Culex pipiens by spraying an attractive toxic sugar bait solution in the vegetation near larval habitats. J Med Entomol 47: 63-66.

    Article  PubMed  Google Scholar 

  • Müller GC, Kravchenko VD and Schlein Y (2008) Decline of Anopheles sergentii and Aedes caspius populations following presentation of attractive toxic (spinosad) sugar bait stations in an oasis. J Am Mosq Control Assoc 24: 147-149.

    Article  PubMed  Google Scholar 

  • Müller GC, Revay EE and Schlein Y (2011) Relative attraction of the sand fly Phlebotomus papatasi to local flowering plants in the Dead Sea region. J Vector Ecol 36: S187-S194.

    Article  PubMed  Google Scholar 

  • Müller GC, Xue RD and Schlein Y (2010d) Seed pods of the carob tree Ceratonia siliqua are a favored sugar source for the mosquito Aedes albopictus in coastal Israel. Acta Trop 116: 235-239.

    Article  PubMed  Google Scholar 

  • Muller GC, Xue RD and Schlein Y (2011) Differential attraction of Aedes albopictus in the field to flowers, fruits and honeydew. Acta Trop 118: 45-49.

    Article  PubMed  Google Scholar 

  • Naksathit AT and Scott TW (1998) Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar. J Am Mosq Control Assoc 14: 148-152.

    PubMed  CAS  Google Scholar 

  • Nasci RS (1991) Influence of larval and adult nutrition on biting persistence in Aedes aegypti (Diptera: Culicidae). J Med Entomol 28: 522-526.

    PubMed  CAS  Google Scholar 

  • Nayar JK (1978) The detection of nectar sugars in field-collected Culex nigripalpus and its application. Ann Entomol Soc Am 71: 55-59.

    CAS  Google Scholar 

  • Nayar JK and Sauerman DM (1975) The effects of nutrition on survival and fecundity in Florida mosquitoes part 2: utilization of a blood meal for survival. J Med Entomol 12: 99-103.

    PubMed  CAS  Google Scholar 

  • Ng’habi K, Huho BJ, Nkwengulila G, Killeen GF, Knols BJG and Ferguson HM (2008) Sexual selection in mosquito swarms: may the best man lose? Anim Behav 76: 105-112.

    Article  Google Scholar 

  • Norris LC, Fornadel CM, Hung WC, Pineda FJ and Norris DE (2010) Frequency of multiple blood meals taken in a single gonotrophic cycle by Anopheles arabiensis mosquitoes in Macha, Zambia. Am J Trop Med Hyg 83: 33-37.

    Article  PubMed  Google Scholar 

  • Nunes RD, de Oliveira RL and Braz GRC (2008) A novel method for measuring fructose ingestion by mosquitoes. J Vector Ecol 33: 225-231.

    Article  PubMed  Google Scholar 

  • O’Meara GF (1987) Nutritional ecology of blood-feeding Diptera. In: Slansky F and Rodriguez JG (eds.) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, New York, NY, USA, pp. 741-764.

    Google Scholar 

  • Okanda FM, Dao A, Njiru BN, Arija J, Akelo HA, Toure Y, Odulaja A, Beier JC, Githure JI, Yan G, Gouagna LC, Knols BJG and Killeen GF (2002) Behavioural determinants of gene flow in malaria vector populations: Anopheles gambiae males select large females as mates. Malar J 1: 10.

    Article  PubMed  CAS  Google Scholar 

  • Okech BA, Gouagna LC, Kabiru EW, Beier JC, Yan G and Githure JI (2004) Influence of age and previous diet of Anopheles gambiae on the infectivity of natural Plasmodium falciparum gametocytes from human volunteers. J Insect Science 4: 33.

    Google Scholar 

  • Okech BA, Gouagna LC, Killeen GF, Knols BGJ, Kabiru EW, Beier JC, Yan G and Githure JI (2003) Influence of sugar availability and indoor microclimate on survival of Anopheles gambiae (Diptera: Culicidae) under semifield conditions in western Kenya. J Med Entomol 40: 657-663.

    Article  PubMed  Google Scholar 

  • O’Meara GF (ed.) (1985) Ecology of autogeny in mosquitoes. Ecology of mosquitoes: Proceedings of a workshop. Fla. Med. Entomol. Lab, Vero Beach, FL, USA.

    Google Scholar 

  • Patterson RS, Smittle BJ and DeNeve RT (1969) Feeding habits of male southern house mosquitoes on P-labeled and unlabeled plants. J Econ Entomol 62: 1455-1458.

    PubMed  CAS  Google Scholar 

  • Pumpuni CB, Demaio J, Kent M, Davis JR and Beier JC (1996) Bacterial population dynamics in three anopheline species: The impact on Plasmodium sporogonic development. Am J Trop Med Hyg 54: 214-218.

    PubMed  CAS  Google Scholar 

  • Rasgon JL, Styer LM and Scott TW (2003) Wolbachia-induced mortality as a mechanism to modulate pathogen transmission by vector arthropods. J Med Entomol 40: 125-132.

    Article  PubMed  Google Scholar 

  • Reeves WC, Brookman B and Hammon W (1948) Studies on the flight range of certain Culex mosquitoes using a fluorescent dye marker, with notes on Culiseta and Anopheles. Mosq News 8: 62.

    Google Scholar 

  • Reisen WK (2004) Lessons from the past: historical studies by the University of Maryland and the University of California, Berkeley. Wageningen UR Frontis Series 2: 25-32.

    Google Scholar 

  • Reisen WK, Meyer RP and Milby MM (1986) Patterns of fructose feeding by Culex tarsalis (Diptera: Culicidae). J Med Entomol 23: 366-373.

    PubMed  CAS  Google Scholar 

  • Renshaw M, Service MW and Birley MH (1994) Host finding, feeding patterns and evidence for a memorized home range of the mosquito Aedes cantans. Med Vet Entomol 8: 187-193.

    Article  Google Scholar 

  • Renshaw M, Silver JB and Service MW (1995) Differential lipid reserves influence host seeking behaviour in the mosquitoes Aedes cantans and Aedes punctor. Med Vet Entomol 9: 381-387.

    Article  Google Scholar 

  • Rhainds M (2010) Female mating failures in insects. Entomol Exp Appl 136: 211-226.

    Google Scholar 

  • Ribeiro J, Rowton ED and Charlab R (2000) Salivary amylase activity of the phlebotomine sand fly, Lutzomyia longipalpis. Insect Biochem Mol Biol 30: 271-277.

    Article  PubMed  CAS  Google Scholar 

  • Riehle MA and Jacobs-Lorena M (2005) Using bacteria to express and display anti-parasite molecules in mosquitoes: Current and future strategies. Insect Biochem Mol Biol 35: 699-707.

    Article  PubMed  CAS  Google Scholar 

  • Riehle MA, Moreira CK, Lampe D, Lauzon C and Jacobs-Lorena M (2007) Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol 37: 595-603.

    Article  PubMed  CAS  Google Scholar 

  • Rivero A and Ferguson HM (2003) The energetic budget of Anopheles stephensi infected with Plasmodium chabaudi: is energy depletion a mechanism for virulence? Proc R Soc B 270: 1365-1371.

    Article  PubMed  CAS  Google Scholar 

  • Robich RM and Denlinger DL (2005) Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. Proc Natl Acad Sci USA 102: 15912-15917.

    Article  PubMed  CAS  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis, Springer, Berlin, Germany.

    Google Scholar 

  • Roitberg BD and Friend WG (1992) A general theory for host seeking decisions in mosquitoes. Bull Math Biol 54: 401-412.

    PubMed  CAS  Google Scholar 

  • Roitberg BD, Keiser S and Hoffmeister T (2010) State dependent attacks in a mosquito. Physiol Entomol 35: 46-51.

    Article  Google Scholar 

  • Roitberg BD, Smith JJ and Friend WG (1994) Host response profiles: A new theory to help us understand why and how attractants attract. J Am Mosq Control Assoc 10: 333-338.

    PubMed  CAS  Google Scholar 

  • Ross R (1910) The prevention of malaria. John Murray, London, UK.

    Google Scholar 

  • Rund, SSC, Hou TY, Ward SM, Collins FH and Duffield GE (2011) Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 108: E421-E430.

    Article  PubMed  CAS  Google Scholar 

  • Russell CB and Hunter FE (2002) Analysis of nectar and honeydew feeding in Aedes and Ochlerotatus mosquitoes. J Am Mosq Control Assoc 18: 86-90.

    PubMed  Google Scholar 

  • Russell PF, West LD, Manwell RD and MacDonald G (1963) Practical malariology. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Samish M and Akov S (1972) Influence of feeding on midgut protease activity in Aedes aegypti. Israel J Entomol 7: 41-48.

    CAS  Google Scholar 

  • Scaraffia PY and Wells MA (2003) Proline can be utilized as an energy substrate during flight of Aedes aegypti females. J Insect Physiol 49: 591-601.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer CH and Miura T (1972) Sources of energy utilized by natural populations of the mosquito, Culex tarsalis, for overwintering. J Insect Physiol 18: 797-805.

    Article  PubMed  CAS  Google Scholar 

  • Schiefer BA, Ward RA and Eldridge BF (1977) Plasmodium cynomolgi: Effects of malaria infection on laboratory flight performance of Anopheles stephensi mosquitoes. Exp Parasitol 41: 397-404.

    Article  PubMed  CAS  Google Scholar 

  • Schlein Y (1986) Sandfly diet and leishmania. Parasitology today 2: 175-177.

    Article  PubMed  CAS  Google Scholar 

  • Schlein Y and Jacobson RL (1994) Mortality of Leishmania major in Phlebotomus papatasi caused by plant feeding of the sand flies. Am J Trop Med Hyg 50: 20-27.

    PubMed  CAS  Google Scholar 

  • Schlein Y and Jacobson RL (1999) Sugar meals and longevity of the sandfly Phlebotomus papatasi in an arid focus of Leishmania major in the Jordan valley. Med Vet Entomol 13: 65-71.

    Article  PubMed  CAS  Google Scholar 

  • Schlein Y and Jacobson RL (2001) Hunger tolerance and Leishmania in sandflies. Nature 414: 168.

    Article  PubMed  CAS  Google Scholar 

  • Schlein Y and Muller GC (1995) Assessment of plant tissue feeding by sand flies (Diptera: Psychodidae) and mosquitoes (Diptera: Culicidae). J Med Entomol 32: 882-887.

    PubMed  CAS  Google Scholar 

  • Schlein Y and Müller GC (2008) An approach to mosquito control: Using the dominant attraction of flowering Tamarix jordanis trees against Culex pipiens. J Med Entomol 45: 384-390.

    Article  PubMed  Google Scholar 

  • Schlein Y and Pener H (1990) Bait fed adult Culex pipiens carry the larvicide Bacillus sphaericus to the larval habitat. Med Vet Entomol 4: 283-288.

    Article  PubMed  CAS  Google Scholar 

  • Schlein Y and Warburg A (1986) Phytophagy and the feeding cycle of Phlebotomus papatasi (Diptera: Psychodidae) under experimental conditions. J Med Entomol 23: 11-15.

    PubMed  CAS  Google Scholar 

  • Schlein Y and Yuval B (1987) Leishmaniasis in the Jordan valley iv. Attraction of Phlebotomus papatasi (Diptera: Psychodidae) to plants in the field. J Med Entomol 24: 87-90.

    PubMed  CAS  Google Scholar 

  • Schlein Y, Jacobson RL and Muller GC (2001) Sand fly feeding on noxious plants: A potential method for the control of leishmaniasis. Am J Trop Med Hyg 65: 300-303.

    PubMed  CAS  Google Scholar 

  • Schwartz A and Koella JC (2002) Melanization of Plasmodium falciparum and c-25 sephadex beads by field-caught Anopheles gambiae (Diptera: Culicidae) from southern Tanzania. J Med Entomol 39: 84-88.

    Article  PubMed  Google Scholar 

  • Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P and Edman JD (2000) Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89-101.

    Article  PubMed  CAS  Google Scholar 

  • Scott TW, Clark GG, Lorenz LH, Amerasinghe PH, Reiter P and Edman JD (1993) Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique. J Med Entomol 30: 94-99.

    PubMed  CAS  Google Scholar 

  • Scott TW, Githeko AK, Fleisher A, Harrington LC and Yan G (2006) DNA profiling of human blood in anophelines from lowland and highland sites in western Kenya. Am J Trop Med Hyg 75: 231-237.

    PubMed  CAS  Google Scholar 

  • Scott TW, Naksathit A, Day JF, Kittayapong P and Edman JD (1997) A fitness advantage for Ae. aegypti and the viruses it transmits when females feed only on human blood. Am J Trop Med Hyg 57: 235-239.

    PubMed  CAS  Google Scholar 

  • Shaukat AM, Breman JG and McKenzie FE (2010) Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination. Malar J 9: 122-122.

    Article  PubMed  Google Scholar 

  • Shroyer DA and Sanders DP (1977) The influence of carbohydrate-feeding and insemination on oviposition of an indiana strain of Aedes vexans (Diptera: Culicidae). J Med Entomol 14: 121-127.

    PubMed  CAS  Google Scholar 

  • Shuel RW (1992) The production of nectar and pollen. In: Grout RA (ed.) The hive and the honey bee, 4th ed. Dadant and Sons, Hamilton, IL, USA, pp. 401-425.

    Google Scholar 

  • Sim C and Denlinger DL (2009) Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol. Genomics 39: 202-209.

    Article  PubMed  CAS  Google Scholar 

  • Simpson MG and Laurence BR (1979) Incorporation of radioactive precursors into filarial larvae of Brugia developing in susceptible and refractory mosquitoes. J Parasitol 65: 732-736.

    Article  PubMed  CAS  Google Scholar 

  • Smith SM and Gadawski RM (1994) Nectar feeding by the early spring mosquito Aedes provocans. Med Vet Entomol 8: 201-213.

    Article  PubMed  CAS  Google Scholar 

  • Somani BL, Khanade J and Sinha R (1987) A modified anthrone-sulfuric acid method for the determination of fructose in the presence of certain proteins. Anal Biochem 167: 327-330.

    Article  PubMed  CAS  Google Scholar 

  • South SH and Arnqvist G (2011) Male, but not female, preference for an ornament expressed in both sexes of the polygynous mosquito Sabethes cyaneus. Anim Behav 81: 645-651.

    Article  Google Scholar 

  • Souza-Neto JA, Machado FP, Lima JB, Valle D and Ribolla PEM (2007) Sugar digestion in mosquitoes: Identification and characterization of three midgut α-glucosidases of the neo-tropical malaria vector Anopheles aquasalis (Diptera: Culicidae). Comp Biochem Phys A: Molec & Integr Physiol 147: 993-1000.

    Article  CAS  Google Scholar 

  • Spencer CY, Pendergast IV TH and Harrington LC (2005) Fructose variation in the dengue vector, Aedes aegypti, during high and low transmission seasons in the Mae Sot region of Thailand. J Am Mosq Control Assoc 21: 177-181.

    Article  PubMed  CAS  Google Scholar 

  • Stephens DW and Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Stone CM, Hamilton IM and Foster WA (2011) A survival and reproduction trade-off is resolved in accordance with resource availability by virgin female mosquitoes. Anim Behav 81: 765-774.

    Article  PubMed  Google Scholar 

  • Stone CM, Jackson BT and Foster WA (2012) Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae. Malar J 11: 3.

    Article  PubMed  CAS  Google Scholar 

  • Stone CM, Taylor RM, Roitberg BD and Foster WA (2009) Sugar deprivation reduces insemination of Anopheles gambiae (Diptera: Culicidae), despite daily recruitment of adults, and predicts decline in model populations. J Med Entomol 46: 1327-1337.

    Article  PubMed  CAS  Google Scholar 

  • Straif SC and Beier JC (1996) Effects of sugar availability on the blood feeding behaviour of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 33: 608-612.

    PubMed  CAS  Google Scholar 

  • Styer LM, Carey JR, Wang JL and Scott TW (2007a) Mosquitoes do senesce: Departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111-117.

    PubMed  Google Scholar 

  • Styer LM, Minnick SL, Sun AK and Scott TW (2007b) Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood. Vector Borne Zoonotic Dis 7: 86-98.

    Article  PubMed  Google Scholar 

  • Suwanchaichinda C and Paskewitz SM (1998) Effects of larval nutrition, adult body size, and adult temperature on the ability of Anopheles gambiae (Diptera: Culicidae) to melanize sephadex beads. J Med Entomol 35: 157-161.

    PubMed  CAS  Google Scholar 

  • Suzuki R, Zhang Y, Iino T, Kosako Y, Komagata K and Uchimura T (2010) Asaia astilbes, Asaia platycodi, and Asaia prunellae, novel acetic acid bacteria isolated from flowers in japan. J Gen App Microbiol 56: 339-346.

    Article  CAS  Google Scholar 

  • Takken W, Klowden MJ and Chambers GM (1998) Effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae): the disadvantage of being small. J Med Entomol 35: 639-645.

    PubMed  CAS  Google Scholar 

  • Telang A and Wells MA (2004) The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. J Insect Physiol 50: 677-685.

    Article  PubMed  CAS  Google Scholar 

  • Tesh RB, Guzman H and Wilson ML (1992) Trans-beta-farnesene as a feeding stimulant for the sand fly Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol 29: 226-231.

    PubMed  CAS  Google Scholar 

  • Tomberlin JK, Rains GC, Allan SA, Sanford MR and Lewis WJ (2006) Associative learning of odor with food-or blood-meal by Culex quinquefasciatus say (Diptera: Culicidae). Naturwissenschaften 93: 551-556.

    Article  PubMed  CAS  Google Scholar 

  • Tripet F, Aboagye-Antwi F and Hurd H (2008) Ecological immunology of mosquito-malaria interactions. Trends Parasitol 24: 219-227.

    Article  PubMed  Google Scholar 

  • Tseng JM, Jones CJ and Hogsette JA. (1983) Nectar feeding and the stable fly, Stomoxys calcitrans (Diptera: Muscidae). J. Florida Anti-Mosq Assoc 54: 40-41.

    Google Scholar 

  • Tsunoda T, Fukuchi A, Nanbara S and Takagi M (2010) Effect of body size and sugar meals on oviposition of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). J Vector Ecol 35: 56-60.

    Article  PubMed  Google Scholar 

  • Vaidyanathan R, Fleisher AE, Minnick SL, Simmons KA and Scott TW (2008) Nutritional stress affects mosquito survival and vector competence for west nile virus. Vector Borne Zoonotic Dis 8: 727-732.

    Article  PubMed  Google Scholar 

  • Van Den Hurk AF, Johnson PH, Hall-Mendelin S, Northill JA, Simmons RJ, Jansen CC, Frances SP, Smith GA and Ritchie SA (2007) Expectoration of flaviviruses during sugar feeding by mosquitoes (Diptera: Culicidae). J Med Entomol 44: 845-850.

    Article  PubMed  Google Scholar 

  • Van Handel E (1967) Determination of fructose and fructose-yielding carbohydrates with cold anthrone. Anal Biochem 19: 193-194.

    Article  PubMed  Google Scholar 

  • Van Handel E (1972) The detection of nectar in mosquitoes. Mosq News 32: 458-458.

    Google Scholar 

  • Van Handel E, Edman JD, Day JF, Scott TW, Clark CG, Reiter P and Lynn HC (1994) Plant-sugar, glycogen, and lipid assay of Aedes aegypti collected in urban Puerto Rico and rural Florida. J Am Mosq Control Assoc 10: 149-153.

    CAS  Google Scholar 

  • Vargo AM and Foster WA (1982) Responsiveness of female Aedes aegypti (Diptera: Culicidae) to flower extracts. J Med Entomol 19: 710-718.

    Google Scholar 

  • Vaughan JA, Noden BH and Beier JC (1994) Prior blood feeding effects on susceptibility of Anopheles gambiae (Diptera: Culicidae) to infection with cultured Plasmodium falciparum (Haemosporida: Plasmodiidae). J Med Entomol 31: 445-449.

    PubMed  CAS  Google Scholar 

  • Verhoek BA and Takken W (1994) Age effects on the insemination rate of Anopheles gambiae s.l. in the laboratory. Entomol Exp App 72: 167-172.

    Article  Google Scholar 

  • Vrzal EM, Allan SA and Hahn DA (2010) Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. J Insect Physiol: 1659-1664.

    Google Scholar 

  • Walker ED and Edman JD (1985) The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence. J Med Entomol 22: 370-372.

    PubMed  CAS  Google Scholar 

  • Watanabe M, Kamimura K and Kubota K (1973) A simplified method for the analysis of various sugars fed the mosquito, Culex pipiens sl jap. J Sanit Zool 24: 17-21.

    Google Scholar 

  • Weathersby AB and Noblet R (1973) Plasmodium gallinaceum: Development in Aedes aegypti maintained on various carbohydrate diets. Exp Parasitol 34: 426-431.

    Article  PubMed  CAS  Google Scholar 

  • WHO (2004) Global strategic framework for integrated vector management. CDS/CPE/PVC/2004.10. Geneva: World Health Organization.

    Google Scholar 

  • Wittie J (2003) The effect of sugar and blood-host type on the survival, fecundity, biting frequency, and persistence of the eastern tree-hole mosquito, Ochlerotatus triseriatus (Diptera: Culicidae). MSc Thesis, The Ohio State University, Columbus, OH, USA.

    Google Scholar 

  • Xue RD and Barnard DR (1999) Effects of partial blood engorgement and pretest carbohydrate availability on the repellency of deet to Aedes albopictus. J Vector Ecol 24: 111.

    PubMed  CAS  Google Scholar 

  • Xue RD, Ali A and Barnard DR (2008) Host species diversity and post-blood feeding carbohydrate availability enhance survival of females and fecundity in Aedes albopictus (Diptera: Culicidae). Exp Parasitol 119: 225-228.

    Article  PubMed  Google Scholar 

  • Xue RD, Barnard DR and Muller GC (2010) Effects of body size and nutritional regimen on survival in adult Aedes albopictus (Diptera: Culicidae). J Med Entomol 47: 778-782.

    Article  PubMed  Google Scholar 

  • Xue RD, Kline DL, Ali A and Barnard DR (2006) Application of boric acid baits to plant foliage for adult mosquito control. J Am Mosq Control Assoc 22: 497-500.

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Katsura K, Kawasaki H, Widyastuti Y, Saono S, Seki T, Uchimura T and Komagata K (2000) Asaia bogorensis, an unusual acetic acid bacterium in the alpha-proteobacteria. Int J Syst Evol Microbiol 50: 823.

    Article  PubMed  CAS  Google Scholar 

  • Yan G, Severson DW and Christensen BM (1997) Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution 51: 441-450.

    Article  Google Scholar 

  • Yuval B (1992) The other habit: sugar feeding by mosquitoes. Bull Soc Vector Ecol 17: 150-156.

    Google Scholar 

  • Yuval B (2006) Mating systems of blood-feeding flies. Annu Rev Entomol 51: 413-440.

    Article  PubMed  CAS  Google Scholar 

  • Yuval B and Bouskila A (1993) Temporal dynamics of mating and predation in mosquito swarms. Oecologia 95: 65-69.

    Google Scholar 

  • Yuval B, Holliday-Hanson ML and Washino R (1994) Energy budget of swarming male mosquitoes. Ecol Entomol 19: 74-78.

    Article  Google Scholar 

Download references

Acknowledgements

We thank David Denlinger, Ian Hamilton, and Holly Tuten for reading and providing helpful comments on a previous version of this manuscript. This work was supported, in part, by NIH grant number R01-AI077722 from the National Institute of Allergy & Infectious Diseases to WAF. Its content is solely the responsibility of the authors and does not represent the official views of the NIAID or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris M. Stone .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Stone, C.M., Foster, W.A. (2013). Plant-sugar feeding and vectorial capacity. In: Ecology of parasite-vector interactions. Ecology and control of vector-borne diseases, vol 3. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-744-8_3

Download citation

Publish with us

Policies and ethics