Skip to main content

Vitamin D and skin cancer

  • Chapter
  • 2636 Accesses

Part of the book series: Human Health Handbooks no. 1 ((HHH,volume 2))

Abstract

Exposure to ultraviolet radiation from sunlight causes many harmful effects in skin, including sunburn, apoptosis, DNA damage and immunosuppression. Both DNA damage and immunosuppression are key factors in the initiation of skin cancer. While exposure to sunlight is harmful, it is necessary for production of vitamin D3 and the biologically active metabolite 1,25(OH)2D3 in the skin. Both 1,25(OH)2D3 and analogs, such as 1,25-dihydroxylumisterol3 can inhibit ultraviolet radiation-induced DNA damage, apoptosis and immunosuppression in human skin cells and in mouse models. Levels of p53 and nitric oxide products also increase in skin cells following ultraviolet radiation. Increases in p53 may facilitate DNA repair in cells yet to undergo replication, or may facilitate apoptosis of irreparably damaged cells. Nitric oxide products have been implicated in ultraviolet radiation-induced DNA damage and can inhibit DNA repair. Interestingly, vitamin D compounds can further increase p53 levels and can reduce nitric oxide products in skin cells. There are two main signal transduction pathways for vitamin D: a genomic pathway and a rapid, non-genomic pathway. It is this latter pathway through which the photoprotective effects of vitamin D compounds appear to be mediated. ultraviolet radiation-induced production of vitamin D and metabolites requires several hours. Thus, build up of vitamin D compounds in skin is likely to protect from the next dose of ultraviolet radiation rather than the immediate exposure. Clearly, there must be a balance between some sun exposure to produce vitamin D and the need for sun avoidance or protection to reduce risks of skin cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1,25(OH)2D3 :

1,25-dihydroxyvitamin D3

AK:

Actinic keratosis

CPD:

Cyclobutane pyrimidine dimer

JM:

1α,25-dihydroxy-7-dehydrocholesterol

JN:

1,25-dihydroxylumisterol3

MARRS:

Membrane-associated rapid response steroid binding

MED:

Minimal erythemal dose

NER:

Nucleotide excision repair

PDIA3:

Protein disulfide isomerase family A, member 3

SBC:

Sunburn cell

SCC:

Squamous cell carcinoma

UVR:

Ultraviolet radiation

VDR:

Vitamin D receptor

References

  • Bau, D.T., Gurr, J.R. and Jan, K.Y., 2001. Nitric oxide is involved in arsenite inhibition of pyrimidine dimer excision. Carcinogenesis 22, 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Berg, R.J., Van Kranen, H.J., Rebel, H.G., De Vries, A., Van Vloten, W.A., Van Kreijl, C.F., van der Leun, J.C. and De Gruijl, F.R., 1996. Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proceedings of the National Academy of Sciences of the United States of America 93, 274–278.

    Article  PubMed  CAS  Google Scholar 

  • Bikle, D.D., Nemanic, M.K., Whitney, J.O. and Elias, P.W., 1986. Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3. Biochemistry 25, 1545–1548.

    Article  PubMed  CAS  Google Scholar 

  • Brash, D.E., 1988. UV mutagenic photoproducts in Escherichia coli and human cells: a molecular genetics perspective on human skin cancer. Photochemistry and Photobiology 48, 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Brash, D.E., Ziegler, A., Jonason, A.S., Simon, J.A., Kunala, S. and Leffell, D.J., 1996. Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. Journal of Investigative Dermatology Symposium Proceedings 1, 136–142.

    CAS  Google Scholar 

  • Bruch-Gerharz, D., Ruzicka, T. and Kolb-Bachofen, V., 1998. Nitric oxide in human skin: current status and future prospects. Journal of Investigative Dermatology 110, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H.R., Tsao, D.A., Wang, S.R. and Yu, H.S., 2003. Expression of nitric oxide synthases in keratinocytes after UVB irradiation. Archives of Dermatology Research 295, 293–296.

    Article  CAS  Google Scholar 

  • Claerhout, S., Van Laethem, A., Agostinis, P., Garmyn, M., Claerhout, S., Van Laethem, A., Agostinis, P. and Garmyn, M., 2006. Pathways involved in sunburn cell formation: deregulation in skin cancer. Photochemical & Photobiological Sciences 5, 199–207.

    Article  CAS  Google Scholar 

  • Cooke, M.S., Podmore, I.D., Mistry, N., Evans, M.D., Herbert, K.E., Griffiths, H.R. and Lunec, J., 2003. Immunochemical detection of UV-induced DNA damage and repair. Journal of Immunological Methods 280, 125–133.

    Article  PubMed  CAS  Google Scholar 

  • Damian, D., Kim, Y.J., Dixon, K., Halliday, G.M., Javeri, A. and Mason, R.S., 2010. Topical calcitriol protects from UV-induced genetic damage but suppresses immunity in humans. Experimental Dermatology 19, e23-e30.

    Article  PubMed  Google Scholar 

  • De Haes, P., Garmyn, M., Degreef, H., Vantieghem, K., Bouillon, R. and Segaert, S., 2003. 1,25-Dihydroxyvitamin D3 inhibits ultraviolet B-induced apoptosis, Jun kinase activation, and interleukin-6 production in primary human keratinocytes. Journal of Cellular Biochemistry 89, 663–673.

    Article  PubMed  Google Scholar 

  • De Haes, P., Garmyn, M., Verstuyf, A., De Clercq, P., Vandewalle, M., Degreef, H., Vantieghem, K., Bouillon, R. and Segaert, S., 2005. 1,25-Dihydroxyvitamin D3 and analogues protect primary human keratinocytes against UVB-induced DNA damage. Journal of Photochemistry & Photobiology. B Biology 78, 141–148.

    Article  Google Scholar 

  • De Winter, S., Vink, A.A., Roza, L. and Pavel, S., 2001. Solar-simulated skin adaptation and its effect on subsequent UV-induced epidermal DNA damage. Journal of Investigative Dermatology 117, 678–682.

    Article  PubMed  Google Scholar 

  • Deliconstantinos, G., Villiotou, V. and Stavrides, J.C., 1996. Alterations of nitric oxide synthase and xanthine oxidase activities of human keratinocytes by ultraviolet B radiation. Potential role for peroxynitrite in skin inflammation. Biochemical Pharmacology 51, 1727–1738.

    CAS  Google Scholar 

  • Dhanalakshmi, S., Mallikarjuna, G.U., Singh, R.P. and Agarwal, R., 2004. Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53-p21/Cip1 in epidermis. Carcinogenesis 25, 1459–1465.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, T.H., Eisman, J.A.E., Mason, R.S., Nowson, C.A., Pasco, J.A., Sambrook, P.N. and Wark, J.D., 2005. Vitamin D and adult bone health in Australia and New Zealand: a position statement. Medical Journal of Australia 182, 281–285.

    Google Scholar 

  • Dixon, K.M., Deo, S.S., Norman, A.W., Bishop, J.E., Halliday, G.M., Reeve, V.E. and Mason, R.S., 2007. In vivo relevance for photoprotection by the vitamin D rapid response pathway. Journal of Steroid Biochemistry and Molecular Biology 103, 451–456.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, K.M., Deo, S.S., Wong, G., Slater, M., Norman, A.W., Bishop, J.E., Posner, G.H., Ishizuka, S., Halliday, G.M., Reeve, V.E. and Mason, R.S., 2005. Skin cancer prevention: a possible role of 1,25dihydroxyvitamin D3 and its analogs. Journal of Steroid Biochemistry and Molecular Biology 97, 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, K.M., Sequeira, V.B., Camp, A.J. and Mason, R.S., 2010. Vitamin D-fence. Photochemical & Photobiological Sciences 9, 564–570.

    Article  CAS  Google Scholar 

  • Ghoreishi, M., Bach, P., Obst, J., Komba, M., Fleet, J.C., Dutz, J.P., Ghoreishi, M., Bach, P., Obst, J., Komba, M., Fleet, J.C. and Dutz, J.P., 2009. Expansion of antigen-specific regulatory T cells with the topical vitamin d analog calcipotriol. Journal of Immunology 182, 6071–6078.

    Article  CAS  Google Scholar 

  • Gorman, S., Kuritzky, L.A., Judge, M.A., Dixon, K.M., McGlade, J.P., Mason, R.S., Finlay-Jones, J.J. and Hart, P.H., 2007. Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4 + CD25+ cells in the draining lymph nodes. Journal of Immunology 179, 6273–6283.

    CAS  Google Scholar 

  • Grimbaldeston, M.A., Nakae, S., Kalesnikoff, J., Tsai, M. and Galli, S.J., 2007. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nature Immunology 8, 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R., Dixon, K.M., Deo, S.S., Holliday, C.J., Slater, M., Halliday, G.M., Reeve, V.E. and Mason, R.S., 2007. Photoprotection by 1,25dihydroxyvitamin D is associated with an increase in p53 and a decrease in nitric oxide products. Journal of Investigative Dermatology 127, 707–715.

    Article  PubMed  CAS  Google Scholar 

  • Hall, P.A., McKee, P.H., Menage, H.D., Dover, R. and Lane, D.P., 1993. High levels of p53 protein in UV-irradiated normal human skin. Oncogene. 8, 203–207.

    PubMed  CAS  Google Scholar 

  • Hanada, K., Sawamura, D., Nakano, H. and Hashimoto, I., 1995. Possible role of 1,25-dihydroxyvitamin D3-induced metallothionein in photoprotection against UVB injury in mouse skin and cultured rat keratinocytes. Journal of Dermatological Science 9, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Hanneman, K.K., Scull, H.M., Cooper, K.D. and Baron, E.D., 2006. Effect of topical vitamin D analogue on in vivo contact sensitization. Archives of Dermatology 142, 1332–1334.

    Article  PubMed  Google Scholar 

  • Holick, M.F., 2004. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. American Journal of Clinical Nutrition 80, 1678 S-1688 S.

    PubMed  CAS  Google Scholar 

  • Holick, M.F., MacLaughlin, J.A., Clark, M.B., Holick, S.A., Potts Jr., J.T., Anderson, R.R., Blank, I.H., Parrish, J.A. and Elias, P., 1980. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 210, 203–205.

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal, M., LaRusso, N.F., Burgart, L.J. and Gores, G.J., 2000. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Research 60, 184–190.

    PubMed  CAS  Google Scholar 

  • Jiang, W., Ananthaswamy, H.N., Muller, H.K. and Kripke, M.L., 1999. p53 protects against skin cancer induction by UV-B radiation. Oncogene 18, 4247–4253.

    Article  PubMed  CAS  Google Scholar 

  • Katiyar, S.K., Matsui, M.S. and Mukhtar, H., 2000. Kinetics of UV light-induced cyclobutane pyrimidine dimers in human skin in vivo: an immunohistochemical analysis of both epidermis and dermis. Photochemistry & Photobiology 72, 788–793.

    Article  CAS  Google Scholar 

  • Kensler, T.W., Dolan, P.M., Gange, S.J., Lee, J.K., Wang, Q. and Posner, G.H., 2000. Conceptually new deltanoids (vitamin D analogs) inhibit multistage skin tumorigenesis. Carcinogenesis. 21, 1341–1345.

    Article  PubMed  CAS  Google Scholar 

  • Kochevar, I.E., Pathak, M.A. and Parrish, J.A., 1999. Photophysics, Photochemistry and Photobiology. In: I.M. Freedberg, Eisen, A., Wolff, K., Austen, K.F., Goldsmith, L., Katz, S. and Fitzpatrick, T.B. (eds.). Fitzpatrick’s Dermatology in General Medicine. McGraw-Hill, New York, NY, USA, pp. 220–230.

    Google Scholar 

  • Kripke, M.L. and Fisher, M.S., 1976. Immunologic parameters of ultraviolet carcinogenesis. Journal of the National Cancer Institute 57, 211–215.

    PubMed  CAS  Google Scholar 

  • Lane, D.P., 1992. Cancer. p53, guardian of the genome. Nature 358, 15–16.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. and Youn, J.I., 1998. The photoprotective effect of 1,25-dihydroxyvitamin D3 on ultraviolet light B-induced damage in keratinocyte and its mechanism of action. Journal of Dermatological Science 18, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, B., Genehr, T., Knuschke, P., Pietzsch, J. and Meurer, M., 2001. UVB-induced conversion of 7-dehydrocholesterol to 1alpha,25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. Journal of Investigative Dermatology 117, 1179–1185.

    Article  PubMed  CAS  Google Scholar 

  • Malloy, P.J. and Feldman, D., 1999. Vitamin D resistance. The American Journal of Medicine 106, 355–370.

    Article  PubMed  CAS  Google Scholar 

  • Malloy, P.J., Pike, J.W. and Feldman, D., 1999. The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocrine Reviews 20, 156–188.

    Article  PubMed  CAS  Google Scholar 

  • Mason, R.S., C.J. Holliday and Gupta, R., 2002. 1,25 Dihydroxyvitamin D and photoprotection in skin cells. In: Tsambaos, D. and Merk, H. (ed.), Modern Trends in Skin Pharmacology. Parissianos Medical Publications S.A. Athens, Athens, Greece, pp. 59–66.

    Google Scholar 

  • Mason, R.S., Sequeira, V.B., Dixon, K.M., Gordon-Thomson, C., Pobre, K., Dilley, A., Mizwicki, M.T., Norman, A.W., Feldman, D., Halliday, G.M. and Reeve, V.E., 2010. Photoprotection by 1,25-dihydroxyvitamin D and analogs: Further studies on mechanisms and implications for UV-damage. Journal of Steroid Biochemistry and Molecular Biology 121, 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, Y. and Ananthaswamy, H.N., 2002a. Molecular mechanisms of photocarcinogenesis. Frontiers in Bioscience 7, d765-783.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, Y. and Ananthaswamy, H.N., 2002b. Short-term and long-term cellular and molecular events following UV irradiation of skin: implications for molecular medicine. Expert Reviews in Molecular Medicine 4, 1–22.

    Article  PubMed  Google Scholar 

  • Matsumura, Y. and Ananthaswamy, H.N., 2004. Toxic effects of ultraviolet radiation on the skin. Toxicology and Applied Pharmacology 195, 298–308.

    Article  PubMed  CAS  Google Scholar 

  • McGregor, J.M. and Hawk, J.L.M., 1999. Acute effects of ultraviolet radiation on the skin. In: Freedberg, I.M., Eisen, A., Wolff, K., Austen, K.F., Goldsmith, L., Katz, S. and Fitzpatrick, T.B. (eds.). Fitzpatrick’s Dermatology in General Medicine. McGraw- Hill, New York, NY, USA, pp. 1555–1561.

    Google Scholar 

  • McGregor, W.G., 1999. DNA repair, DNA replication, and UV mutagenesis. Journal of Investigative Dermatology. Symposium Proceedings 4, 1–5.

    Article  CAS  Google Scholar 

  • Mitchell, D.L., Cleaver, J.E. and Epstein, J.H., 1990. Repair of pyrimidine (6–4) pyrimidone photoproducts in mouse skin. Journal of Investigative Dermatology 95, 55–59.

    Article  PubMed  CAS  Google Scholar 

  • Mizwicki, M.T., Keidel, D., Bula, C.M., Bishop, J.E., Zanello, L.P., Wurtz, J.-M., Moras, D. and Norman, A.W., 2004. Identification of an alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance in 1alpha,25(OH)2-vitamin D3 signaling. Proceedings of National Acadamy of Sciences of the United States of America 101, 12876–12881.

    Article  CAS  Google Scholar 

  • Mizwicki, M.T., Menegaz, D., Yaghmaei, S., Henry, H.L. and Norman, A.W., 2010. A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure-function implications. Journal of Steroid Biochemistry and Molecular Biology 121, 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Moloney, F.J., Comber, H., O’Lorcain, P., O’Kelly, P., Conlon, P.J. and Murphy, G.M., 2006. A population-based study of skin cancer incidence and prevalence in renal transplant recipients. British Journal of Dermatology 154, 498–504.

    Article  PubMed  CAS  Google Scholar 

  • Mullauer, L., Gruber, P., Sebinger, D., Buch, J., Wohlfart, S., Chott, A., Mullauer, L., Gruber, P., Sebinger, D., Buch, J., Wohlfart, S. and Chott, A., 2001. Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutation Research 488, 211–231.

    Article  PubMed  CAS  Google Scholar 

  • Nataraj, A.J., Trent, J.C., 2nd and Ananthaswamy, H.N., 1995. p53 gene mutations and photocarcinogenesis. Photochemistry and Photobiology 62, 218–230.

    Article  PubMed  CAS  Google Scholar 

  • Nemere, I., Dormanen, M.C., Hammond, M.W., Okamura, W.H. and Norman, A.W., 1994. Identification of a specific binding protein for 1 alpha,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. Journal of Biological Chemistry 269, 23750–23756.

    PubMed  CAS  Google Scholar 

  • Nemere, I., Farach-Carson, M.C., Rohe, B., Sterling, T.M., Norman, A.W., Boyan, B.D. and Safford, S.E., 2004. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells. Proceedings of National Academy of Science of the United States of America 101, 7392–7397.

    Article  CAS  Google Scholar 

  • Nemere, I., Garbi, N., Hammerling, G.J. and Khanal, R.C., 2010. Intestinal cell calcium uptake and the targeted knockout of the 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) receptor/PDIA3/ Erp57. Journal of Biological Chemistry 285, 31859–31866.

    Article  PubMed  CAS  Google Scholar 

  • Nghiem, D.X., Kazimi, N., Mitchell, D.L., Vink, A.A., Ananthaswamy, H.N., Kripke, M.L. and Ullrich, S.E., 2002. Mechanisms underlying the suppression of established immune responses by ultraviolet radiation. Journal of Investigative Dermatology 119, 600–608.

    Article  PubMed  CAS  Google Scholar 

  • Nishigori, C., Yarosh, D.B., Ullrich, S.E., Vink, A.A., Bucana, C.D., Roza, L. and Kripke, M.L., 1996. Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proceedings of the National Academy of Sciences of the United States of America 93, 10354–10359.

    Article  PubMed  CAS  Google Scholar 

  • Norman, A.W., Henry, H.L., Bishop, J.E., Song, X., Bula, C. and Okamura, W.H., 2001. Different shapes of the steroid hormone 1α,25(OH)2-vitamin D3 act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid responses. Steroids 66, 147–158.

    Article  PubMed  CAS  Google Scholar 

  • Norman, A.W., Mizwicki, M.T. and Norman, D.P.G., 2004. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nature Reviews Drug Discovery 3, 27–41.

    Article  PubMed  CAS  Google Scholar 

  • Ouhtit, A., Muller, H.K., Davis, D.W., Ullrich, S.E., McConkey, D. and Ananthaswamy, H.N., 2000. Temporal events in skin injury and the early adaptive responses in ultraviolet-irradiated mouse skin. American Journal of Pathology 156, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Pathak, M.A., Ngheim, P. and Fitzpatrick, T.B., 1999. Acute and chronic effects of the sun. In: Freedberg, I.M., Eisen, A., Wolff, K., Austen, K.F., Goldsmith, L., Katz, S. and Fitzpatrick, T.B. (eds.). Fitzpatrick’s Dermatology in General Medicine. McGraw-Hill, New York, NY, USA, pp. 1598–1607.

    Google Scholar 

  • Posner, G.H., Jeon, H.B., Sarjeant, A., Riccio, E.S., Doppalapudi, R.S., Kapetanovic, I.M., Saha, U., Dolan, P. and Kensler, T.W., 2004. Low-calcemic, efficacious, 1a,25-dihydroxyvitamin D3 analog QW-1624P2-2: calcemic dose-response determination, preclinical genotoxicity testing, and revision of A-ring stereochemistry. Steroids 69, 757–762.

    Article  PubMed  CAS  Google Scholar 

  • Ravid, A., Rubinstein, E., Gamady, A., Rotem, C., Liberman, U.A. and Koren, R., 2002. Vitamin D inhibits the activation of stress-activated protein kinases by physiological and environmental stresses in keratinocytes. Journal of Endocrinology 173, 525–532.

    Article  PubMed  CAS  Google Scholar 

  • Saito, S., Yamaguchi, H., Higashimoto, Y., Chao, C., Xu, Y., Fornace Jr., A.J., Appella, E. and Anderson, C.W., 2003. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. Journal of Biological Chemistry 278, 37536–37544.

    Article  PubMed  CAS  Google Scholar 

  • Sigmundsdottir, H., Pan, J., Debes, G.F., Alt, C., Habtezion, A., Soler, D., Butcher, E.C., Sigmundsdottir, H., Pan, J., Debes, G.F., Alt, C., Habtezion, A., Soler, D. and Butcher, E.C., 2007. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nature Immunology 8, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Simon, J.C., Cruz Jr., P.D., Tigelaar, R.E., Sontheimer, R.D. and Bergstresser, P.R., 1991. Adhesion molecules CD11a, CD18, and ICAM-1 on human epidermal Langerhans cells serve a functional role in the activation of alloreactive T cells. Journal of Investigative Dermatology 96, 148–151.

    Article  PubMed  CAS  Google Scholar 

  • Springbett, P., Buglass, S. and Young, A.R., 2010. Photoprotection and vitamin D status. Journal of Photochemistry and Photobiology. B, Biology 101, 160–168.

    PubMed  CAS  Google Scholar 

  • Tang, A. and Udey, M.C., 1991. Inhibition of epidermal Langerhans cell function by low dose ultraviolet B radiation. Ultraviolet B radiation selectively modulates ICAM-1 (CD54) expression by murine Langerhans cells. Journal of Immunology 146, 3347–3355.

    CAS  Google Scholar 

  • Tian, X.Q., Chen, T.C., Lu, Z., Shao, Q. and Holick, M.F., 1994. Characterization of the translocation process of vitamin D3 from the skin into the circulation. Endocrinology 135, 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Toews, G.B., Bergstresser, P.R. and Streilein, J.W., 1980. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. Journal of Immunology 124, 445–453.

    CAS  Google Scholar 

  • Webb, A.R. and Engelsen, O., 2006. Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochemistry and Photobiology 82, 1697–1703.

    PubMed  CAS  Google Scholar 

  • Wong, G., Gupta, R., Dixon, K.M., Deo, S.S., Choong, S.M., Halliday, G.M., Bishop, J.E., Ishizuka, S., Norman, A.W., Posner, G.H. and Mason, R.S., 2004. 1,25-Dihydroxyvitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. Journal of Steroid Biochemistry and Molecular Biology 89–90, 567–570.

    Article  PubMed  Google Scholar 

  • Yang, S., Smith, C., Prahl, J.M., Luo, X. and DeLuca, H.F., 1993. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Archives of Biochemistry & Biophysics 303, 98–106.

    Article  CAS  Google Scholar 

  • Youn, J.I., 1997. Photoprotective effect of calcipotriol upon skin photoreaction to UVA and UVB. Photodermatology, Photoimmunology and Photomedicine 13, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Zanello, L.P. and Norman, A.W., 2004a. Electrical responses to 1alpha,25(OH)2-Vitamin D3 and their physiological significance in osteoblasts. Steroids 69, 561–565.

    Article  PubMed  CAS  Google Scholar 

  • Zanello, L.P. and Norman, A.W., 2004b. Rapid modulation of osteoblast ion channel responses by 1alpha,25(OH)2- vitamin D3 requires the presence of a functional vitamin D nuclear receptor. Proceedings of the National Acadamy of Sciences of the United States of America 101, 1589–1594.

    Article  CAS  Google Scholar 

  • Ziegler, A., Jonason, A.S., Leffell, D.J., Simon, J.A., Sharma, H.W., Kimmelman, J., Remington, L., Jacks, T. and Brash, D.E., 1994. Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Dixon .

Editor information

Victor R. Preedy

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers

About this chapter

Cite this chapter

Dixon, K.M., Sequeira, V.B., Camp, A.J., Mason, R.S. (2012). Vitamin D and skin cancer. In: Preedy, V.R. (eds) Handbook of diet, nutrition and the skin. Human Health Handbooks no. 1, vol 2. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-729-5_24

Download citation

Publish with us

Policies and ethics