Skip to main content

Plucked hair: how to get stem cells and induced pluripotent stem cells for future clinical applications

  • Chapter
  • 1555 Accesses

Part of the book series: Human Health Handbooks no. 1 ((HHH,volume 1))

Abstract

Generation of induced pluripotent stem cells from somatic cells by the expression of defined transcription factors has created new opportunities for the development of patient-specific therapies. Thus far, the generation of iPSCs has been performed from a variety of somatic sources. However, keratinocytes from either skin biopsies or plucked hair have shown significantly higher reprogramming efficiencies when compared to other easily accessible patient samples (e.g. a 100-fold higher reprogramming efficiency than fibroblasts). In this chapter we will summarize what we have learned after many years of intense research in both the hair follicle stem cell (SC) and iPSCs fields. First, we will focus on reviewing the current knowledge of hair follicle as a source of adult SCs for cell therapy. Second, we will discuss the future challenges in utilizing hair follicle SCs for regenerative medicine. Third, we will consider the benefits of utilizing iPSCs for cell therapy. Finally, we will provide a detailed a step-by-step protocol for the generation of human iPSCs from keratinocytes derived from a single plucked hair sample.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

cMyc:

Avian myelocytomatosis viral oncogene homolog

CFE:

Colony formation efficiency

ES:

Embryonic stem

ESCs:

Embryonic stem cells

FACS:

Fluorescence activated cell-sorting

Fbx15:

F-box 15

hESC:

Human embryonic stem cells

H2B-GFP:

Histone 2B-green fluorescent protein

HMG:

High motility group

ICM:

Inner cell mass

iPSCs:

Induced pluripotent stem cells

IRS:

Inner root sheath

K15:

Cytokeratin 15

KiPSCs:

Human iPSCs derived from keratinocytes

Klf4:

Krüppel-like factor 4

Lgr5:

Leucine-rich repeat-containing G protein-coupled receptor 5

LRC:

Labelling retaining cell

MEFs:

Mouse embryonic fibroblasts

Oct4:

Octamer-binding transcription factor 4

ORS:

Outer root sheath

SC:

Stem cell

Sox2:

Sry-related HMG box 2

References

  • Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., Edel, M., Boue, S. and Izpisua Belmonte, J.C., 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology 26, 1276–1284.

    Article  PubMed  CAS  Google Scholar 

  • Aasen, T. and Izpisúa Belmonte, J.C., 2010. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protocols 5, 371–382.

    Article  PubMed  CAS  Google Scholar 

  • Amoh, Y., Li, L., Katsuoka, K., Penman, S. and Hoffman, R.M., 2005. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proceedings of the National Academy of Sciences of the United States of America 102, 5530–5534.

    Article  PubMed  CAS  Google Scholar 

  • Amoh, Y., Li, L., Yang, M., Moossa, A.R., Katsuoka, K., Penman, S. and Hoffman, R.M., 2004. Nascent blood vessels in the skin arise from nestin.expressing hair-follicle cells. Proceedings of the National Academy of Sciences of the United States of America 101, 13291–13295.

    Article  PubMed  CAS  Google Scholar 

  • Boue, S., Paramonov, I., Barrero, M.J. and Izpisúa Belmonte, J.C., 2010. Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. what is in the plate? PLoS ONE 5, 12664.

    Google Scholar 

  • Cotsarelis, G., 2006. Epithelial stem cells: a folliculocentric view. Journal of Investigative Dermatology 126, 1459–1468.

    Article  PubMed  CAS  Google Scholar 

  • Cotsarelis, G., Sun, T.T. and Lavker, R.M., 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  • Egli, D., Rosains, J., Birkhoff, G. and Eggan, K., 2007. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447, 679–685.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E., 2009. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137, 811–819.

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger, K. and Plath, K., 2009. Epigenetic reprogramming and induced pluripotency. Development 136, 509–523.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, RM., 2006. The pluripotency of hair follicle stem cells. Cell Cycle 5, 232–233.

    Article  PubMed  CAS  Google Scholar 

  • Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W. and Melton, D.A., 2008. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology 26, 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., Morris, R.J. and Cotsarelis, G., 2005. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine 11, 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  • Jaks, V., Barker, N., Kasper, M, Van Es, J.H., Snippert, H.J., Clevers, H. and Toftgard, R., 2008. Lrg5 marks cycling, yet long-lived, hair-follicle stem cells. Nature Genetics 40, 1291–1299.

    Article  PubMed  CAS  Google Scholar 

  • Levy, V., Lindon, C., Harfe, B.D. and Morgan, B.A., 2005. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Developmental Cell 9, 855–861.

    Article  PubMed  CAS  Google Scholar 

  • Limat, A., French, L.E., Blal, L., Saurat, J.H., Hunziker, T. and Salomon, D., 2003. Organotypic cultures of autologous hair follicle keratinocytes for the treatment of recurrent leg ulcers. Journal of the American Academy of Dermatology 48, 207–214.

    Article  PubMed  Google Scholar 

  • Liu, Y., Lyle, S., Yang, Z. and Cotsarelis, G., 2003. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. Journal of Investigative Dermatology 121, 963–968.

    Article  PubMed  CAS  Google Scholar 

  • Lyle, S., Christofidou-Solomidou, M., Liu, Y., Elder, D.E., Albelda, S. and Cotsarelis, G., 1998. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. Journal of Cell Science 111, 3179–3188.

    PubMed  CAS  Google Scholar 

  • Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J.S., Sawicki, J.A. and Cotsarelis, G., 2004. Capturing and profiling adult hair follicle stem cells. Nature Biotechnology 22, 411–417.

    Article  PubMed  CAS  Google Scholar 

  • Ohyama, M., 2007. Hair follicle bulge: a fascinating reservoir of epithelial stem cells. Journal of Dermatological Science 46, 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Ohyama, M., Terunuma, A., Tock, C.L., Radonovich, M.F., Pise-Masison, C.A., Hopping S.B., Brady, J.N., Udey, M.C. and Vogel, J.C., 2006. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. The Journal of Clinical Investigation 116, 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. and Barrandon, Y., 2001. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj, V., Plane J.M., Williams A.J. and Deng, W., 2010. Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends in Biotechnology 28, 214–23.

    Article  PubMed  CAS  Google Scholar 

  • Snippert, H.J., Haegebarth, A., Kasper, M., Jaks, V., Van Es, J.H., Barker, N., Van de Wetering, M., Van den Born, M., Begthel, H., Vries, R.G., Stange, D.E., Toftgard, R. and Clevers H., 2010. Lrg6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K. and Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T. and Lavker, R.M., 2000. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones J.M., 1998. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Trempus, C.S., Morris, R.J., Bortner, C.D., Cotsarelis, G., Faircloth, R.S., Reece, J.M. and Tennant, R.W., 2003. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. Journal of Investigative Dermatology 120, 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W.E., Rendl, M. and Fuchs, E., 2004. Defining the epithelial stem cell niche in skin. Science 303, 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, S. and Blau, B.H, 2010. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, S., 2007. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H., Fang, D., Kumar, SM., Li, L., Nguyen, TK., Acs, G., Herlyn, M. and Xu, X., 2006. Isolation of a novel population of multipotent adult stem cells from human hair follicle. American Journal of Pathology 168, 1879–1888.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. and Thomson, J.A., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor R. Preedy PhD DSc FRSPH FIBiol FRCPath

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers

About this chapter

Cite this chapter

Montserrat, N., Belmonte, J.C.I. (2012). Plucked hair: how to get stem cells and induced pluripotent stem cells for future clinical applications. In: Preedy, V.R. (eds) Handbook of hair in health and disease. Human Health Handbooks no. 1, vol 1. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-728-8_9

Download citation

Publish with us

Policies and ethics