Skip to main content

Abstract

Fungal problems arise when there are water problems. This will be the case after calamities such as floods and also when condensation of water occurs inside the house due to a cold bridge. However, even when these calamities do not happen, it is still remarkably difficult to maintain an entirely fungus free house. Bathrooms, for example are notorious for the development of fungi to such an extent that their presence seems to be the rule and not the exception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adan O (1994) On the fungal defacement of interior finishes. PhD Thesis, University of Eindhoven, Eindhoven, the Netherlands.

    Google Scholar 

  • Bartnicki-Garcia S, Hergert F and Giertz G (1989) Computer simulation of fungal morphogenesis and the mathematical basis for hyphal(tip) growth. Protoplasma 153: 46–57.

    Article  Google Scholar 

  • Brownlee C and Jennings DH (1981a) Further observations on tear or drop formation by mycelium of Serpula lacrymans. Trans Br Mycol Soc 77: 33–40.

    Article  Google Scholar 

  • Brownlee C and Jennings DH (1981b) The content of soluble carbohydrates and their translocation in mycelium of Serpula lacrymans. Trans Br Mycol Soc 77: 615–619.

    Article  CAS  Google Scholar 

  • Clarke RW, Jennings DW and Coggins CR (1980) Growth of Serpula lacrymans in relation to water potential of substrate. Trans Br Mycol Soc 75: 271–280.

    Article  Google Scholar 

  • Coggins CR, Jennings DH and Clarke RW (1980) Thear or drop formation by mycelium of Serpula lacrymans. Trans Br Mycol Soc 75: 63–67.

    Article  Google Scholar 

  • De Jong J (2006) Aerial hyphae of Schizophyllum commune: their function and formation. PhD Thesis, University Utrecht, Utrecht, the Netherlands.

    Google Scholar 

  • Dijksterhuis J, Sanders M, Gorris LGM and Smid EJ (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol 89: 13–21.

    Article  Google Scholar 

  • Gusse AC, Miller PD and Volk TJ (2006) White-rot fungi demonstrate first biodegradation of phenolic resin. Environ Sci Thech 40: 4196–4199.

    Article  CAS  Google Scholar 

  • Jedd G and Chua N-H (2000) A new self-assembled peroxisomal vesicle required for effcient resealing of the plasma membrane. Nat Cell Biol 2: 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Lugones LG, De Jong JF, De Vries OMH, Jalving R, Dijksterhuis J and Wösten HAB (2004) The SC15 protein of Schizophyllum commune mediates formation of aerial hyphae and attachment in the absence of the SC3 hydrophobin. Mol Microbiol 53: 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Lugones LG, Wösten HAB, Birkenkamp KU, Sjollema KA, Zagers J and Wessels JGH (1999) Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus. Mycol Res 103: 635-640.

    Article  CAS  Google Scholar 

  • Meijer W (2007) Microbody dynamics in Penicillium chrysogenum. Autumn Meeting, Section Mycology of the Dutch Society of Microbiology, Utrecht, the Netherlands, 16 November 2007.

    Google Scholar 

  • Milstein O, Gersonde R, Huttermann A, Chen MJ and Meister J (1992) Fungal Biodegradation of ligopolystyrene graft copolymers. Appl Environ Microbiol 58: 3225–3232.

    PubMed  CAS  Google Scholar 

  • Park D (1982) Phylloplane fungi: tolerance of hyphal tips to drying. Trans Br Mycol Soc 79: 174–178.

    Article  Google Scholar 

  • Rahardjo YSP, Korona D, Haemers S, Weber FJ, Tramper J and Rinzema A (2004) Limitations of membrane cultures as a model solid-state fermentation system. Lett Appl Microbiol 39: 504–508.

    Article  PubMed  CAS  Google Scholar 

  • Rahardjo YSP, Sie S, Weber FJ, Tramper J and Rinzema A. (2005a) Effect of low oxygen concentrations on growth and a-amylase production of Aspergillus oryzae in model solid-state fermentation systems. Biomol Eng 21: 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Rahardjo YSP, Weber FJ, Haemers S, Tramper J and Rinzema A (2005b) Aerial mycelia of Aspergillus oryzae accelerate α-amylase production in a model solid-state fermentation system. Enzym Microb Thech 36: 900–902.

    Article  CAS  Google Scholar 

  • Rahardjo YSP, Weber FJ, Le Comte EP, Tramper J and Rinzema A (2002) Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnol Bioeng 8: 539–544.

    Article  Google Scholar 

  • Riquelme M, Bartnicki-García S, González-Prieto JM, Sánchez-León E, Verdín-Ramos JA, Beltrán-Aguilar J and Freitag M (2007) Spitzenkörper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot Cell 6: 1853–1864.

    Article  PubMed  CAS  Google Scholar 

  • Te Biesebeke R, Boussier A, Van Biezen N, Braaksma M, Van den Hondel CAMJJ, De Vos WM and Punt PJ (2006) Expression of Aspergillus hemoglobin domain activities in Aspergillus oryzae grown on solid substrates improves growth rate and enzyme production. Biotechnol J 1: 822–827.

    Article  Google Scholar 

  • Van den Boogert PHJF and Deacon JW (1994) Biotrophic mycoparasitism by Verticillium biguttatum on Rhizoctonia solani. Eur J Plant Pathol 100: 137–156.

    Article  Google Scholar 

  • Van Wetter M-A, Wösten HA, Sietsma HJ and Wessels JGH (2000) Hydrophobin gene expression affects hyphal wall composition in Schyzophyllum commune. Fungal Genet Biol 31: 99–104.

    Article  PubMed  Google Scholar 

  • Vinck A (2007) Hyphal differentiation in the fungal mycelium. PhD Thesis, University Utrecht, Utrecht, the Netherlands.

    Google Scholar 

  • Vinck A, Therlou M, Pastman WR, Martens EP, Ram AF, Van den Hondel CAMJJ and Wösten HAB (2005) Hyphal differentiation in the exploring mycelium of Aspergillus niger. Mol Microbiol 58: 693–699.

    Article  PubMed  CAS  Google Scholar 

  • Wessels JGH (1990) Role of cell wall architecture in fungal tip growth generation. In: Heath IB (ed.) Tip growth in plant and fungal walls, Academic Press, San Diego, CA, USA, pp. 1–12.

    Google Scholar 

  • Wösten HA, Van Wetter MA, Lugones LG, Van der Mei HC, Busscher HJ and Wessels JG (1999) How a fungus escapes the water to grow into the air. Curr Biol 9: 85–88.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Olaf C. G. Adan Robert A. Samson

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Kennedy Warne

About this chapter

Cite this chapter

Dijksterhuis, J. (2011). The fungal cell. In: Adan, O.C.G., Samson, R.A. (eds) Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-722-6_4

Download citation

Publish with us

Policies and ethics