Skip to main content

Water relations of fungi in indoor environments

  • Chapter

Abstract

It is without doubt that there is no fungal growth without water. This relationship should underlie any control strategy for indoor fungal growth, but appears to be more complex than commonly assumed. In microbiology, the water relations of fungi are commonly studied under well-defined, stable conditions of water activity and temperature. The actual reality of the indoor environment, however, can be highly transient. Time dependent changes in humidity, temperature and air movements introduce inertia effects both in the biological system of the growing fungus and the physical system of materials, constructions and building. Typically, fluctuations in the environmental parameters can be grouped into two categories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adan OCG (1994) On the fungal defacement of interior finishes. PhD thesis, Eindhoven University of Technology, Eindhoven, the Netherlands, 224 pp

    Google Scholar 

  • Adan OCG and Samson RA (1994) Fungal disfigurement of interior finishes. In: Singh J (ed.) Building mycology. Management of decay and health in buildings. Chapman and Hall, London, UK, pp. 130–158.

    Google Scholar 

  • Andrews S and Pitt JI (1987) Further studies on the water relations of xerophilic fungi, including some halophiles. J Gen Microbiol 133: 233–238.

    CAS  Google Scholar 

  • Ayerst G (1969) The effects of moisture and temperature on growth and spore germination in some fungi. J Stored Prod Res 5: 127–141.

    Article  Google Scholar 

  • Becker R and Puterman M (1987) Verhütung von Schimmelbildung in Gebäuden. Teil 2: Einfuß der Oberfächenmaterialien. Bauphysik 4: 107–110.

    Google Scholar 

  • Becker R, Puterman M and Laks J (1986) The effect of porosity of emulsion paints on mould growth. Durability Build Mat 3: 369–380.

    CAS  Google Scholar 

  • Bravery AF (1985) Mould and its control. Information Paper 11/85, Building Research Establishment, Garston, Watford, UK.

    Google Scholar 

  • Chen AW and Griffin DM (1966) Soil physical factors and the ecology of fungi IV. Interaction between temperature and soil moisture. Trans Br Mycol Soc 49: 551–562.

    Article  Google Scholar 

  • Coppock JBM and Cookson ED (1951) The effect of humidity on mould growth on constructional materials. J Sci Food Agric 2: 534–537.

    Article  Google Scholar 

  • Flannigan B and Miller JD (2001) Microbial growth in indoor environments. In: Flannigan B, Samson RA and Miller JD (eds.) Microorganisms in home and indoor work environments. Diversity, health impacts, investigation and control. CRC Press, Boca Raton, FL, USA, pp. 35–68.

    Chapter  Google Scholar 

  • Francis A (1987) Schimmelproblemen in gebouwen. Determinatie, groei-omstandigheden, gevoeligheid van diverse afwerkingen, bestrijding. PhD Thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

    Google Scholar 

  • Gaudy AF and Gaudy ET (1980) Microbiology for environmental scientists and engineers. McGraw-Hill Book Company, London, UK.

    Google Scholar 

  • Grant C, Hunter CA, Flannigan B and Bravery AF (1989) The moisture requirements of moulds isolated from domestic dwellings. Int Biodeterioration 25: 259–284.

    Article  Google Scholar 

  • Grinbergs L, Hyppel A, Höglund I and Ottoson G (1993) Wet-room wall systems – Mould resistance. In: Erhorn H, Reiß J and Szerman M (eds.), Proceedings of the International Symposium Energy Efficient Buildings (Design, Performance and Operation) of the CIB Working Commission W67 “Energy Conservation in the Built Environment” and IEA-SHC Working Task Group XIII “Low Energy Buildings”, March 9-11, Leinfelden-Echterdingen, Germany, IRB Verlag, Stuttgart, Germany.

    Google Scholar 

  • Harrewijn GA (1979) Elementaire microbiologie. Centraal Instituut voor Voedingsonderzoek TNO, Zeist, the Netherlands.

    Google Scholar 

  • Lacey J, Hill ST and Edwards MA (1980) Micro-organisms in stored grains: their enumeration and significance. Trop Stored Prod Inform 39: 19–33.

    Google Scholar 

  • Magan N and Lacey J (1984) Effect of temperature and pH on water relations of field and storage fungi. Trans Br Mycol Soc 82: 71–81.

    Article  Google Scholar 

  • Morgenstern J (1982) Einfuß von Polyvinylacetat-Zusätzen in Putzmortel auf die Schimmelbildung. Material und Organismen 17: 241–251.

    CAS  Google Scholar 

  • Park D (1982) Phylloplane fungi: tolerance of hyphal tips to drying. Trans Br Mycol Soc 79: 174–178.

    Article  Google Scholar 

  • Pasanen A-L, Heinonen-Tanski H, Kalliokoski P and Jantunen MJ (1992) Fungal micro-colonies on indoor surfaces – an explanation for the base level fungal spore counts in indoor air. Atmos Environ 26: 121–124.

    Article  Google Scholar 

  • Read ND, Porter R and Beckett A (1983) A comparison of preparative techniques for the examination of the external morphology of fungal material with the scanning electron microscope. Can J Bot 61: 2059–2078.

    Article  Google Scholar 

  • Scott WJ (1957) Water relations of food spoilage microorganisms. In: Mark EM and Steward GF (eds.), Advances in food research. Academic Press, New York, NY, USA, pp. 83–127.

    Google Scholar 

  • Smith SL and Hill ST (1982) Influence of temperature and water activity on germination and growth of Aspergillus restrictus and A. versicolor. Trans Br Mycol Soc 79: 558–559.

    Article  Google Scholar 

  • Van der Well GK and Adan OCG (1999) Moisture in organic coatings – a review. Progr in Organic Coatings 37: 1–14.

    Article  Google Scholar 

  • Van Wetter MA, Wösten HAB, Sietsma JH and Wessels JG (2000) Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune. Fungal Genet Biol 31: 99–104.

    Article  PubMed  Google Scholar 

  • Viitanen HA (1997) Modelling the time factor in the development of mould fungi – the effect of critical humidity and temperature conditions on pine and spruce sapwood. Holzforschung 51: 6–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Olaf C. G. Adan Robert A. Samson

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Wageningen Academic Publishers

About this chapter

Cite this chapter

Adan, O.C.G., Huinink, H.P., Bekker, M. (2011). Water relations of fungi in indoor environments. In: Adan, O.C.G., Samson, R.A. (eds) Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-722-6_2

Download citation

Publish with us

Policies and ethics