Skip to main content

Part of the book series: Atlantis Computational Intelligence Systems ((ATLANTISCIS,volume 2))

  • 691 Accesses

Abstract

The main objective of multiple criteria decision making models is to select an alternative, from a finite number, regarding a set of pre-defined criteria. Usually, this type of problems includes two main tasks, rating the alternatives regarding each criterion and then ranking them. Once a decision is made (alternative selected) the problem is solved. However, for situations involving reaching consensus or requiring several steps before reaching a final decision, we must consider a dynamic and adaptable decision model, which considers previous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. E. Triantaphyllou, Multi criteria Decision Making Method: a Comparative Study, vol. 44, Applied Optimization Series, Kluwer Academic Publishers, (2002).

    Google Scholar 

  2. T. Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, (2004).

    Google Scholar 

  3. R. Ribeiro, Fuzzy multiple attribute decision making: a review and new preference elicitation techniques, Fuzzy Sets and Systems, 78(2), 155–181, (1996).

    Google Scholar 

  4. J. Busemeyer and J. Townsend, Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment, Psychological Review, 100, 432–432, (1993).

    Google Scholar 

  5. G. P. Richardson and A. L. Pugh III, Introduction to System DynamicsModeling with DYNAMO, Productivity Press, Portland, Oregon, (1981).

    Google Scholar 

  6. K. Cios, W. Pedrycz, and R. W. Swiniarski, Data Mining Methods for Knowledge Discovery, Kluwer Academic Publishers, (1998).

    Google Scholar 

  7. S.-J. Chen and C.-L. Hwang, Fuzzy Multiple Attribute Decision Making, Methods and Applications, Number 375 in Lectures Notes in Economics andMathematical Systems, Springer-Verlag, (1992).

    Google Scholar 

  8. T. C. Pais, R. A. Ribeiro, Y. Devouassoux, and S. Reynaud, Dynamic ranking algorithm for landing site selection, In eds. L. Magdalena, M. Ojeda-Aciego, and J. L. Verdegay, Proceedings of the 12th International Conference on Information Processing and Manage ment of Uncertainty in Knowledge-Base Systems (IPMU), pp. 608–613, (2008).ISBN 978-84-612-3061-7. URL: http://www.gimac.uma.es/ipmu08/proceedings/papers/080-PaisEtAl.pdf.

    Google Scholar 

  9. R. Roe, J. Busemeyer, and J. Townsend, Multialternative decision field theory: a dynamic connectionist model of decision making, Psychol Rev., 108(2), 370–92, (2001).

    Google Scholar 

  10. A. Diederich, Mdft account of decision making under time pressure, Psychonomic Bulletin & Review, 10(1), 157–166, (2003).

    Google Scholar 

  11. A. Diederich, Dynamic stochastic models for decision making under time constraints, Journal of Mathematical Psychology, 41(3), 260–274, (1997).

    Google Scholar 

  12. Y. Devouassoux, S. Reynaud, G. Jonniaux, R. A. Ribeiro, and T. C. Pais, Hazard avoidance developments for planetary exploration, In GNC 2008: 7th International ESA Conference on Guidance, Navigation & Control Systems, (2008).

    Google Scholar 

  13. N. Viana, A. Pereira, R. A. Ribeiro, and A. Donati, Handling missing values in solar array performance degradation forecasting, In Proceedings of the 15th Mini-EURO conference on Managing Uncertainty in Decision Support Models (MUDSM 2004), Coimbra, Portugal (September, 2004).

    Google Scholar 

  14. R. Ribeiro and R. Marques Pereira, Generalized mixture operators using weighting functions: A comparative study with wa and owa, European Journal of Operational Research, 145 (2), 329–342, (2003).

    Google Scholar 

  15. R. Pereira and R. Ribeiro, Aggregation with generalized mixture operators using weighting functions, Fuzzy Sets and Systems, 137(1), 43–58, (2003).

    Google Scholar 

  16. R. R. Yager and A. Rybalov, Uninorm aggregation operators, Fuzzy Sets Systems, 80(1), 111–120, (1996).ISSN 0165-0114. http://dx.doi.org/10.1016/0165-0114(95)00133-6.

    Google Scholar 

  17. R. Yager and A. Rybalov, Full reinforcement operators in aggregation techniques, IEEE Transactions on Systems, Man and Cybernetics, Part B, 28 (6), 757–769, (1998).

    Google Scholar 

  18. H. Zimmermann, Fuzzy Set Theory–and Its Applications, Kluwer Academic Publishers, (2001).

    Google Scholar 

  19. T. Jean-Marius and S. Strandmoe, Integrated vision and navigation for a planetary lander, In 49th International Astronautical Congress, Melbourne, Australia, Sept-Oct, (1998).

    Google Scholar 

  20. T. C. Pais, R. A. Ribeiro, Y. Devouassoux, and S. Reynaud, Regions rating for selecting spacecraft landing sites, In eds. D. Ruan, J. Montero, J. Lu, L. Mart´ınez, P. D’hondt, and E. E. Kerre, Computational Intelligence in Decision and Control – Proceedings of the 8th International FLINS Conference, vol. 1, World Scientific Proceedings Series on ComputerEngineering and Information Science, pp. 1039–1044, Singapore (Aug, 2008), World Scientific. ISBN 978-981-279-946-3.

    Google Scholar 

  21. R. M. Dawes, Social selection based on multidimensional criteria, Journal of Abnormal and Social Psychology, 68(1), 104–109, (1964).

    Google Scholar 

  22. T. Pais and R. A. Ribeiro, Contributions for dynamic multicriteria decision making models, In International Fuzzy Systems Association World Congress – IFSA, Lisbon, Portugal, (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Atlantis Press/World Scientific

About this chapter

Cite this chapter

Pais, T.C., Ribeiro, R.A., Simões, L.F. (2010). Uncertainty in Dynamically Changing Input Data. In: Computational Intelligence in Complex Decision Systems. Atlantis Computational Intelligence Systems, vol 2. Atlantis Press. https://doi.org/10.2991/978-94-91216-29-9_2

Download citation

Publish with us

Policies and ethics

Societies and partnerships