Skip to main content

A Biogeometrical Model for Corolla Fusion in Asclepiad Flowers

  • Conference paper
  • First Online:
Modeling in Mathematics

Part of the book series: Atlantis Transactions in Geometry ((ATLANTIS,volume 2))

Abstract

The molecular genetics of flower development have been studied extensively for more than two decades. Fusion of organs and the tendency to oligomery, important characteristics of flower evolution, so far have remained fairly elusive. We present a geometric model for shape and fusion in the corolla of Asclepiads. Examples demonstrate how fusion of petals creates stable centers, a prerequisite for the formation of complex pollination structures via congenital and postgenital fusion events, with the formation of de novo organs, specific to Asclepiads. The development of the corolla reduces to simple inequalities from the MATHS-BOX. The formation of stable centers and of bell and tubular shapes in flowers are immediate and logical consequences of the shape. Our model shows that any study on flowers, especially in evo-devo perspective should be performed within the wider framework of polymery and oligomery and of fusion and synorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Schwartz-Sommer, P. Huijser, W. Nacken, H. Saedler, H. Sommer, Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250, 931–936 (1990)

    Article  Google Scholar 

  2. E.S. Coen, E.M. Meyerowitz, The war of the whorls: genetic interactions controlling flower development. Nature 353, 31–37 (1990)

    Article  Google Scholar 

  3. A.S. Rijpkema, M. Vandenbussche, R. Koes, K. Heijmans, T. Gerats, Variations on a theme: changes in the floral ABCs in angiosperms. Semin. Cell Dev. Biol. 21(1), 100–107 (2010)

    Article  Google Scholar 

  4. B. Causier, Z. Schwartz-Sommer, B. Davies, Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 21, 73–79 (2010)

    Article  Google Scholar 

  5. K. Heijmans, K. Ament, A.S. Rijpkema, J. Zethof, M. Wolters-Arts, T. Gerats, M. Vandenbussche, Redefining C and D in the Petunia ABC. Plant Cell 24(6), 2305–2317 (2012)

    Article  Google Scholar 

  6. P.J. Rudall, R.M. Bateman, Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili. Philos. Trans. R. Soc. B 365, 397–409 (2010)

    Article  Google Scholar 

  7. P.K. Endress, Origins of flower morphology. J. Exp. Zool. (Mol. Dev. Evol.) 291, 105–115 (2001)

    Article  Google Scholar 

  8. L.R. Decraene, E.F. Smets, The distribution and systematic relevance of the androecial character oligomery. Bot. J. Linn. Soc. 118(3), 193–247 (1995)

    Article  Google Scholar 

  9. L. Ronse De Craene, Floral Diagrams (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  10. P.K. Endress, Evolutionary diversification of the flowers in angiosperms. Am. J. Bot. 98(3), 370–396 (2011)

    Article  Google Scholar 

  11. F. Weberling, Morphology of Flowers and Inflorescences (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  12. P.K. Endress, Diversity and Evolutionary Biology of Tropical Flowers (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  13. M. Vandenbussche, G. Theissen, Y. Van de Peer, T. Gerats, Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucl. Acids Res. 31(15), 4401–4409 (2003)

    Article  Google Scholar 

  14. T. Gerats, M. Vandenbussche, A model system for comparative research: Petunia. Trends Plant Sci. 10(5), 251–256 (2005)

    Article  Google Scholar 

  15. Z.H. Gonzalez-Carranza, U. Rompa, J.L. Peters, A. Bhatt, C.A. Wagstaff, A.D. Stead, J.A. Roberts, Hawaiian skirt: an F-box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol. 144, 1370–1382 (2007)

    Google Scholar 

  16. M. Vandenbussche, A. Horstman, J. Zethof, R. Koes, A. Rijpkema, T. Gerats, Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell 21, 2269–2283 (2009)

    Google Scholar 

  17. N.J. Vereecken, J.N. McNeil, Cheaters and liars: chemical mimicry at its finest. Can. J. Zool. 88, 725–752 (2010). doi:10.1139/Z10-040

    Article  Google Scholar 

  18. F. Alberts, U. Meve, Illustrated Handbook of Succulent Plants: Asclepiadaceae (Springer, Berlin, 2002)

    Google Scholar 

  19. J. Gielis, A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 90(3), 333–338 (2003)

    Article  Google Scholar 

  20. P. Natalini, R. Patrizi, P.E. Ricci, The Dirichlet problem for the Laplace equation in a starlike domain of a Riemann surface. Numer. Algorithms 28, 215–227 (2007)

    MATH  Google Scholar 

  21. D. Caratelli, P.E. Ricci, J. Gielis, The Robin problem for the Laplace equation in a three-dimensional starlike domain. Appl. Math. Comput. 218(3), 713–719 (2011)

    MathSciNet  MATH  Google Scholar 

  22. D. Caratelli, J. Gielis, I. Tavkelidze, P.E. Ricci, Fourier-Hankel solution of the Robin problem for the Helmholtz equation in supershaped annular domains. Bound. Value Probl. 2013(113), 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  23. D. Caratelli, P. Natalini, P.E. Ricci, Fourier solution of the wave equation for a star-like-shaped vibrating membrane. Comput. Math. Appl. 59, 176–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Caratelli et al., Fourier Solution of the Dirichlet Problem for the Laplace and Helmholtz Equations in Starlike Domains (Tbilisi University Press, 2010). ISSN 1512-0511

    Google Scholar 

  25. J. Gielis, Inventing the Circle (Geniaal Press, Antwerpen, 2003)

    Google Scholar 

  26. S. Wang, J.Z. Pan, Integrating and querying parallel leaf shape descriptions, International Semantic Web Conference (Springer, Berlin, 2006), pp. 668–681

    Google Scholar 

  27. J. Gielis, T. Gerats, Form and shape of plants and plant organs are determined by a single geometrical superformula, in 14th International Symposium Morphology, Anatomy and Systematics of Plants, Jena, ed. by Helwig, et al. (Program and Abstracts, 1999)

    Google Scholar 

  28. I. Tavkhelidze, C. Cassisa, J. Gielis, P.E. Ricci, About “Bulky” links, generated by generalized Möbius-Listing’s bodies. Rendiconti Lincei-Matematica e Applicazioni 24(1), 11–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Gielis, T. Gerats, A botanical perspective on modeling plants and plant shapes in computer graphics, in International Conference on Computer, Communication and Control Technologies. Austin, Texas (2004)

    Google Scholar 

  30. M. Cartolano, R. Castillo, N. Efremova, M. Kuckenberg, J. Zethof, T. Gerats, Z. Schwarz-Sommer, M. Vandenbussche, A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nature Genetics Published Online 24 June 2007

    Google Scholar 

  31. A.W. Leissa, Vibrations of Plates (1969). NASA SP-160

    Google Scholar 

  32. M. Koiso, B. Palmer, Rolling constructions for anisotropic Delaunay surfaces. Pac. J. Math. 234(2), 345–378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Zhou, Q. Li, S. Townsend, Y.M. Xoie, X. Huang, Fishnet metamaterial with double negative refractive index in blue region of visible spectrum, in Proceedings of the SPIE 8806, Metamaterials: Fundamentals and Applications VI, 88062B (11 September 2013). doi:10.1117/12.2035386

  34. E. Moreno, M. Villada, P. Ruiz, F.G. Roldan, E.G. Marin, A new explicit and analytical model for square Gate-All-Around MOSFETs with rounded corners. Solid-State Electron. 111, 180–187 (2015)

    Article  Google Scholar 

  35. P. Bia, D. Caratelli, L. Mescia, J. Gielis, Analysis and synthesis of supershaped dielectric lens antennas. IET Microw. Antennas Propag. 9(14), 1497–1504 (2015)

    Article  Google Scholar 

  36. S. Lin, L. Zhang, G.V. Reddy, C. Hui, J. Gielis, Y. Ding, P. Shi, A geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation. Ecol. Evol. 6(19), 6798–6806 (2016)

    Article  Google Scholar 

  37. P.-J. Shi, Q. Xu, H.S. Sandhu, J. Gielis, Y.-L. Ding, H.-R. Li, X.-B. Dong, Comparison of dwarf bamboo (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant. Ecol. Evol. (2015). doi:10.1002/ece3.1728

  38. T.R. Faisal, E.M.K. Abad, N. Hristozov, D. Pasini, The impact of tissue morphology, cross-section and turgor pressure on the mechanical properties of the leaf petiole in plants. J. Bionic Eng. 7, S11–S23 (2013)

    Article  Google Scholar 

  39. T.R. Faisal, N. Hristozov, T.L. Western, A. Rey, D. Pasini, The twist-to-bend compliance of the Rheum rhabarbarum petiole: integrated computations and experiments. Comput. Methods Biomech. Biomed. Eng. 1–12 (2016)

    Google Scholar 

  40. P.J. Shi, J.G. Huang, C. Hui, H.D. Grissino-Mayer, J.C. Tardif, L.H. Zhai, B.L. Li, Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape. Front. Plant Sci. 6 (2015)

    Google Scholar 

  41. Q. Wei, C. Jiao, L. Guo, Y. Ding, J. Cao, J. Feng, G. Yang, et al., Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots. New Phytol. doi:10.1111/nph.14284

  42. S. Allesina, E. Sander, M.J. Smith, S. Tang, Superelliptical laws for complex networks (2013). arXiv:1309.7275v2

  43. J. Nash, Essays on Game Theory (Princeton University Press, Princeton, 1996)

    Google Scholar 

  44. I. Vekua, On Metaharmonic Functions, vol. 14, Lecture Notes of TICMI (Tbilisi University Press, 2013)

    Google Scholar 

  45. P.B. Green, Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am. J. Bot. 86(8), 1059–1076 (1999)

    Article  Google Scholar 

  46. J. Fourier, Analytical Theory of Heat, Great Books of the Western World (Encyclopedia Brittanica, 1952)

    Google Scholar 

  47. L. Carleson, On convergence and growth of partial sums of Fourier series. Acta Math. 116(1), 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  48. G.P. Tolstov, Fourier Series (Dover Inc., New York, 1962)

    Google Scholar 

  49. M. Rodriguez, E. De Langre, B. Moulia, A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization. Am. J. Bot. 95(12), 1523–1537 (2008)

    Article  Google Scholar 

  50. L.A. Nikolov, P.K. Endress, M. Sugumaran, S. Sasirat, S. Vessabutr, E.M. Kramer, C.C. Davis, Developmental origins of the world largest flowers, Rafflesiaceae. Proc. Natl. Acad. Sci. U. S. A. 110, 18578–18583 (2013)

    Google Scholar 

  51. Y. Fougerolle, A. Gribok, F. Truchetet, in Proceedings of the International Conference on Image Processing ICIP’06, Atlanta, GA, USA (2006), pp. 2193–2196

    Google Scholar 

  52. Y. Fougerolle, F. Truchetet, J. Gielis, A new potential function for self intersecting Gielis curves with rational symmetries, in International Conference on Computer Graphics Theory and Applications GRAPP’09 (INSTICC Press, 2009), pp. 90–95

    Google Scholar 

  53. S. Voisin, M. Abidi, S. Foufou, F. Truchetet, Genetic algorithms for 3D reconstruction with supershapes, in Proceedings of International Conference on Image Processing, ICIP 2009, Cairo, Egypt (IEEE, 2009), pp. 529–532

    Google Scholar 

  54. J. Gielis, D. Caratelli, Y. Fougerolle, P.E. Ricci, T. Gerats, Universal natural shapes: from unifying shape description to simple methods for shape analysis and boundary value problems. PloS One 7(9), e29324 (2012)

    Article  Google Scholar 

  55. Y. Fougerolle, J.F. Gielis, F. Truchetet, A robust evolutionary algorithm for the recovery of rational Gielis curves. Pattern Recognit. 46(8), 2078–2091 (2013)

    Article  Google Scholar 

  56. L. Mescia, P. Bia, D. Caratelli, M.A. Chiapperino, O. Stukach, J. Gielis, Electromagnetic mathematical modeling of 3D supershaped dielectric lens antennas. Math. Probl. Eng. 2016, 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  57. S.C.K. Straub et al., BMC Genomics 12, 211 (2011)

    Google Scholar 

  58. L.D. Harder, S.D. Johnson, Int. J. Plant Sci. 169(1), 59–78 (2009)

    Google Scholar 

  59. C.D. Specht, D.G. Howarth, Adaptation in flower form: a comparative evodevo approach. New Phytol. 206(1), 74–90 (2015)

    Article  Google Scholar 

  60. J. Zhong, J.C. Preston, Bridging the gaps: evolution and development of perianth fusion. New Phytol. 208(2), 330–335 (2015)

    Article  Google Scholar 

  61. E. Costanzo, C. Trehin, M. Vandenbussche, The role of WOX genes in flower development. Ann. Bot. 114(7), 1545–1553 (2014)

    Article  Google Scholar 

  62. L. Niu, H. Lin, F. Zhang, T.W. Watira, G. Li, Y. Tang, M. Tadege, LOOSE FLOWER, a WUSCHEL-like homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. Plant J. 81(3), 480–492 (2015)

    Article  Google Scholar 

  63. M. Vandenbussche, P. Chambrier, S.R. Bento, P. Morel, Petunia, your next supermodel? Front. Plant Sci. 7 (2016)

    Google Scholar 

  64. A.R. van der Krol, R.G. Immink, Secrets of the world’s most popular bedding plant unlocked. Nat. Plants 2, 16082 (2016)

    Article  Google Scholar 

  65. A. Bombarely, M. Moser, A. Amrad, M. Bao, L. Bapaume, C.S. Barry, M. Bucher, Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat. Plants 2, 16074 (2016)

    Google Scholar 

  66. P.K. Endress, Development and evolution of extreme synorganization in angiosperm flowers and diversity: a comparison of Apocynaceae and Orchidaceae. Ann. Bot. mcv119

    Google Scholar 

  67. P.K. Endress, Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony. Ann. Bot. 106, 687–695 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Gielis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Atlantis Press and the author(s)

About this paper

Cite this paper

Gielis, J., Caratelli, D., Fougerolle, Y., Ricci, P.E., Gerats, T. (2017). A Biogeometrical Model for Corolla Fusion in Asclepiad Flowers. In: Gielis, J., Ricci , P., Tavkhelidze, I. (eds) Modeling in Mathematics . Atlantis Transactions in Geometry, vol 2. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-261-8_7

Download citation

Publish with us

Policies and ethics